Displaying 641 – 660 of 3809

Showing per page

Building Mathematical Models and Biological Insight in an Introductory Biology Course

A. E. Weisstein (2011)

Mathematical Modelling of Natural Phenomena

A growing body of literature testifies to the importance of quantitative reasoning skills in the 21st-century biology curriculum, and to the learning benefits associated with active pedagogies. The process of modeling a biological system provides an approach that integrates mathematical skills and higher-order thinking with existing course content knowledge. We describe a general strategy for teaching model-building in an introductory biology course,...

Canards et râteaux

Augustin Fruchard (1992)

Annales de l'institut Fourier

On étudie le phénomène de retard à la bifurcation dans des systèmes dynamiques discrets du plan. La distinction d’une courbe invariante par le système permet de ramener l’étude de ce phénomène à l’étude d’un objet. On démontre la présence du retard dans les systèmes analytiques oscillants. On fait état d’un nouveau phénomène découvert expérimentalement qui apparaît dans les systèmes non inversibles: la courbe invariante présente une succession de pôles exponentiellement étroits. On démontre la présence...

Canonical forms of singular 1D and 2D linear systems

Tadeusz Kaczorek (2003)

International Journal of Applied Mathematics and Computer Science

The paper consists of two parts. In the first part, new canonical forms are defined for singular 1D linear systems and a procedure to determine nonsingular matrices transforming matrices of singular systems to their canonical forms is derived. In the second part new canonical forms of matrices of the singular 2D Roesser model are defined and a procedure for determining realisations in canonical forms for a given 2D transfer function is presented. Necessary and sufficient conditions for the existence...

Canonical input-output representation of linear multivariable stochastic systems and joint optimal parameter and state estimation.

G. Salut, J. Aguilar-Martín, S. Lefevre (1979)

Stochastica

In this paper a complete presentation is given of a new canonical representation of multi-input, multi-output linear stochastic systems. Its equivalence with operator form directly linked with ARMA processes as well as with classical state space representation is given, and a transfer matrix interpretation is developed in an example. The importance of the new representation is mainly in the fact that in the joint state and parameters estimation problem, all unknown parameters appear linearly when...

Chance constrained problems: penalty reformulation and performance of sample approximation technique

Martin Branda (2012)

Kybernetika

We explore reformulation of nonlinear stochastic programs with several joint chance constraints by stochastic programs with suitably chosen penalty-type objectives. We show that the two problems are asymptotically equivalent. Simpler cases with one chance constraint and particular penalty functions were studied in [6,11]. The obtained problems with penalties and with a fixed set of feasible solutions are simpler to solve and analyze then the chance constrained programs. We discuss solving both problems...

Chaos synchronization of TSUCS unified chaotic system, a modified function projective control method

Hamed Tirandaz (2018)

Kybernetika

The synchronization problem of the three-scroll unified chaotic system (TSUCS) is studied in this paper. A modified function projective synchronization (MFPS) method is developed to achieve this goal. Furthermore, the only parameter of the TSUCS unified chaotic system is considered unknown and estimated with an appropriate parameter estimation law. MFPS method is investigated for both identical and non-identical chaotic systems. Lyapunov stability theorem is utilized to verify the proposed feedback...

Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium

Zhouchao Wei, Zhen Wang (2013)

Kybernetika

By introducing a feedback control to a proposed Sprott E system, an extremely complex chaotic attractor with only one stable equilibrium is derived. The system evolves into periodic and chaotic behaviors by detailed numerical as well as theoretical analysis. Analysis results show that chaos also can be generated via a period-doubling bifurcation when the system has one and only one stable equilibrium. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived...

Characterization of generic properties of linear structured systems for efficient computations

Christian Commault, Jean-Michel Dion, Jacob W. van der Woude (2002)

Kybernetika

In this paper we investigate some of the computational aspects of generic properties of linear structured systems. In such systems only the zero/nonzero pattern of the system matrices is assumed to be known. For structured systems a number of characterizations of so-called generic properties have been obtained in the literature. The characterizations often have been presented by means of the graph associated to a linear structured system and are then expressed in terms of the maximal or minimal...

Currently displaying 641 – 660 of 3809