The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
193
We give an approach to large deviation type asymptotic problems without evident probabilistic representation behind. An example provided by the mean field models of quantum statistical mechanics is considered.
The paper presents a mathematical model of a collision situation for objects afloat based on the rules of a multiple complex motion. It also contains an analysis of the presented model and draws some conclusions from it. The method used to determine the minimum-time control of ships in a situation of colliding with other objects afloat is presented for a mathematical model of a collision situation. It also includes the results of a simulation study conducted by means of this method. A parallel approach...
Two related problems, namely the problem of the infinite eigenvalue assignment and that of the solvability of polynomial matrix equations are considered. Necessary and sufficient conditions for the existence of solutions to both the problems are established. The relationships between the problems are discussed and some applications from the field of the perfect observer design for singular linear systems are presented.
This work concerns a discrete-time Markov chain with time-invariant transition mechanism and denumerable state space, which is endowed with a nonnegative cost function with finite support. The performance of the chain is measured by the (long-run) risk-sensitive average cost and, assuming that the state space is communicating, the existence of a solution to the risk-sensitive Poisson equation is established, a result that holds even for transient chains. Also, a sufficient criterion ensuring that...
The paper presents two methods used for the identification of Continuous-time Linear Time Invariant (CLTI) systems. In both methods the idea of using modulating functions and a convolution filter is exploited. It enables the proper transformation of a differential equation to an algebraic equation with the same parameters. Possible different normalizations of the model are strictly connected with different parameter constraints which have to be assumed for the nontrivial solution of the optimal...
The paper deals with the genericity of domain-dependent spectral properties of the Laplacian-Dirichlet operator. In particular we prove that, generically, the squares of the eigenfunctions form a free family. We also show that the spectrum is generically non-resonant.
The results are obtained by applying global perturbations of the domains
and exploiting analytic perturbation properties.
The work is motivated by two applications: an existence result for
the problem of maximizing the rate of...
In this paper we examine the stability of an irrigation canal system. The system considered is a single reach of an irrigation canal which is derived from Saint-Venant's equations. It is modelled as a system of nonlinear partial differential equations which is then linearized. The linearized system consists of hyperbolic partial differential equations. Both the control and observation operators are unbounded but admissible. From the theory of symmetric hyperbolic systems, we derive the exponential...
The main subject of the paper is the description and determination of the impedance operator of a linear periodically timevarying (LPTV) one-port network in the steady-state. If the one-port network parameters and the supply vary periodically with the same period, the network reaches a periodic steady state. However, the sinusoidal supply may induce a nonsinusoidal voltage or current. It is impossible to describe such a phenomenon by means of one complex number. A periodically time-varying one-port...
Currently displaying 81 –
100 of
193