The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 281 –
300 of
375
We study the stability of a flexible beam clamped at one end. A
mass is attached at the other end, where a control moment is
applied. The boundary control is proportional to the angular velocity
at the end. By spectral analysis, we prove that the optimal decay rate
of the energy is given by the spectrum of the generator of the
semigroup associated to the system.
Dans ce travail, nous étudions la propriété de base de Riesz et la stabilisation exponentielle pour une équation des poutres d’Euler-Bernoulli à coefficients variables sous un contrôle frontière linéaire dépendant de la position (resp. l’angle de rotation), de la vitesse et de la vitesse de rotation dans le contrôle force (resp. moment). Nous montrons qu’il existe une suite de fonctions propres généralisées qui forme une base de Riesz de l’espace d’énergie considéré, et qu’il y a stabilité exponentielle...
The problem of boundary stabilization for the isotropic linear
elastodynamic system and the wave equation with Ventcel's
conditions are considered (see [12]). The boundary
observability and the exact controllability were etablished in [11]. We prove here the enegy decay to zero for the elastodynamic
system with stationary Ventcel's conditions by introducing a
nonlinear boundary feedback. We also give a boundary feedback
leading to arbitrarily large energy decay rates for the
elastodynamic system...
On considère l’équation des ondes sur un rectangle avec un feedback de type Dirichlet. On se place dans le cas où la condition de contrôle géométrique n’est pas satisfaite (BLR Condition), ce qui implique qu’on n’a pas stabilité exponentielle dans l’espace d’énérgie. On prouve qu’on peut trouver un sous espace de l’espace d’énergie tel qu’on a stabilité exponentielle. De plus, on montre un résultat de décroissance polynomiale pour toute donnée initiale régulière.
On s'intéresse dans cet article, a la stabilisation de l'équation des ondes dans un domaine extérieur avec condition de Dirichlet...
Dans ce travail, nous étudions une équation des poutres d’Euler-Bernoulli, on contrôle par combinaison linéaire de vitesse et vitesse de rotation appliquées à l’une des extrémités du système. Tout d’abord nous montrons que le problème est bien posé et qu’il y a stabilité uniforme sous certaines conditions portant sur les coefficients de feedback. Puis nous estimons le taux optimal de décroissance de l’énergie du système par la méthode de Shkalikov.
A controller architecture for nonlinear systems described by Gaussian RBF neural networks is proposed. The controller is a stabilising solution to a class of nonlinear optimal state tracking problems and consists of a combination of a state feedback stabilising regulator and a feedforward neuro-controller. The state feedback stabilising regulator is computed on-line by transforming the tracking problem into a more manageable regulation one, which is solved within the framework of a nonlinear predictive...
In this paper we consider a linear system subject to norm bounded, bounded rate time-varying uncertainties. Necessary and sufficient conditions for quadratic stability and stabilizability of such class of uncertain systems are well known in the literature. Quadratic stability guarantees exponential stability in presence of arbitrary time-varying uncertainties; therefore it becomes a conservative approach when, as it is the case considered in this paper, the uncertainties are slowly-varying in time....
This paper considers a three-dimensional energy demand-supply system which typically demonstrates the relationship between the amount of energy supply and that of energy demand for the two regions in China. A delayed feedback controller is proposed to stabilize the system which was originally unstable even under some other controllers. The stability properties of the equilibrium points are subsequently analyzed and it is found that the Hopf bifurcation appears under some conditions. By using the...
In order to better understand the dynamics of acute leukemia, and in particular to find
theoretical conditions for the efficient delivery of drugs in acute myeloblastic leukemia,
we investigate stability of a system modeling its cell dynamics. The overall system is a cascade connection of sub-systems consisting of distributed
delays and static nonlinear feedbacks. Earlier results on local asymptotic stability are
improved by the analysis of the linearized...
This paper deals with a class of uncertain systems with time-varying delays and norm-bounded uncertainty. The stability and stabilizability of this class of systems are considered. Linear Matrix Inequalities (LMI) delay-dependent sufficient conditions for both stability and stabilizability and their robustness are established.
We analyze the stability and stabilizability properties of mixed retarded-neutral type systems when the neutral term may be singular. We consider an operator differential equation model of the system in a Hilbert space, and we are interested in the critical case when there is a sequence of eigenvalues with real parts converging to zero. In this case, the system cannot be exponentially stable, and we study conditions under which it will be strongly stable. The behavior of spectra of mixed retarded-neutral...
We analyze the stability and stabilizability properties of mixed retarded-neutral type
systems when the neutral term may be singular. We consider an operator differential
equation model of the system in a Hilbert space, and we are interested in the critical
case when there is a sequence of eigenvalues with real parts converging to zero. In this
case, the system cannot be exponentially stable, and we study conditions under which it
will be strongly...
We analyze the stability and stabilizability properties of mixed retarded-neutral type
systems when the neutral term may be singular. We consider an operator differential
equation model of the system in a Hilbert space, and we are interested in the critical
case when there is a sequence of eigenvalues with real parts converging to zero. In this
case, the system cannot be exponentially stable, and we study conditions under which it
will be strongly...
Currently displaying 281 –
300 of
375