The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We investigate the state feedback stabilization, in the sense of weak solution, of nonlinear stochastic systems when the drift is quadratic in the control and the diffusion term is affine in the control. Based on the generalised stochastic Lyapunov theorem, we derive the necessary conditions and the sufficient conditions, respectively, for the global asymptotic stabilization in probability by a continuous feedback explicitly computed. The interest of this work is that the existing control methods...
Recent years have witnessed an increasing interest in coordinated control of distributed dynamic systems. In order to steer a distributed dynamic system to a desired state, it often becomes necessary to have a prior control over the graph which represents the coupling among interacting agents. In this paper, a simple but compelling model of distributed dynamical systems operating over a dynamic graph is considered. The structure of the graph is assumed to be relied on the underling system's states....
For a general time-varying system, we prove that existence of an “Output Robust Control Lyapunov Function” implies existence of continuous time-varying feedback stabilizer, which guarantees output asymptotic stability with respect to the resulting closed-loop system. The main results of the present work constitute generalizations of a well known result due to Coron and Rosier [J. Math. Syst. Estim. Control 4 (1994) 67–84] concerning stabilization of autonomous systems by means of time-varying periodic...
For a general time-varying system, we prove that existence of an “Output
Robust Control Lyapunov Function” implies existence of continuous
time-varying feedback stabilizer, which guarantees output asymptotic
stability with respect to the resulting closed-loop system. The main results
of the present work constitute generalizations of a well known result
due to Coron and Rosier [J. Math. Syst. Estim. Control4 (1994) 67–84] concerning
stabilization of autonomous systems by means of time-varying...
This paper presents a method to design explicit control Lyapunov functions for affine
and homogeneous systems that satisfy the so-called “Jurdjevic-Quinn conditions”.
For these systems a positive definite function V0 is known that can only be made
non increasing by feedback. We describe how a control Lyapunov function can be
obtained via a deformation of this “weak” Lyapunov function. Some examples are
presented, and the linear quadratic situation is treated as an illustration.
A delay stochastic method is introduced to control a certain class of chaotic systems. With the Lyapunov method, a suitable kind of controllers with multiplicative noise is designed to stabilize the chaotic state to the equilibrium point. The method is simple and can be put into practice. Numerical simulations are provided to illustrate the effectiveness of the proposed controllable conditions.
The paper deals with the generalized Popov theory applied to uncertain systems with distributed time delay. Sufficient conditions for stabilizing this class of delayed systems as well as for -attenuation achievement are given in terms of algebraic properties of a Popov system via a Liapunov–Krasovskii functional. The considered approach is new in the context of distributed linear time-delay systems and gives some interesting interpretations of memoryless control problems in terms of Popov triplets...
We consider the stabilization of a rotating temperature pulse traveling in a continuous
asymptotic model of many connected chemical reactors organized in a loop with continuously
switching the feed point synchronously with the motion of the pulse solution. We use the
switch velocity as control parameter and design it to follow the pulse: the switch
velocity is updated at every step on-line using the discrepancy between the temperature at
the front...
In the paper definitions of various kinds of stability and boundedness of solutions of linear controllable systems of partial differential equations are introduced and their interconnections are derived. By means of Ljapunov's functions theorems are proved which give necessary and sufficient conditions for particular kinds of stability and boundedness of the solutions.
A tracking problem is considered in the context of a class of multi-input, multi-output, nonlinear systems modelled by controlled functional differential equations. The class contains, as a prototype, all finite-dimensional, linear, -input, -output, minimum-phase systems with sign-definite “high-frequency gain”. The first control objective is tracking of reference signals by the output of any system in : given , construct a feedback strategy which ensures that, for every (assumed bounded...
A tracking problem is considered
in the context of a class of multi-input,
multi-output, nonlinear systems modelled by controlled functional
differential equations. The class contains, as a prototype, all
finite-dimensional, linear, m-input, m-output, minimum-phase
systems with sign-definite “high-frequency gain". The first control
objective is tracking of reference signals r by the output y of
any system in : given , construct a
feedback strategy which ensures that, for every r (assumed bounded
with...
In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...
Currently displaying 21 –
40 of
51