The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Mitrion-C based implementations of three image processing algorithms: a look-up table operation, simple local thresholding and Sauvola's local thresholding are described. Implementation results, performance of the design and FPGA logic utilization are discussed.
While most of state-of-the-art image processing techniques were built under the so-called classical linear image processing, an alternative that presents superior behavior for specific applications comes in the form of Logarithmic Type Image Processing (LTIP). This refers to mathematical models constructed for the representation and processing of gray tones images. In this paper we describe a general mathematical framework that allows extensions of these models by various means while preserving...
During the last decade we have introduced probabilistic mixture models into image modelling area, which present highly atypical and extremely demanding applications for these models. This difficulty arises from the necessity to model tens thousands correlated data simultaneously and to reliably learn such unusually complex mixture models. Presented paper surveys these novel generative colour image models based on multivariate discrete, Gaussian or Bernoulli mixtures, respectively and demonstrates...
Currently displaying 1 –
4 of
4