The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 3 of 3

Showing per page

Quantization Dimension Estimate of Inhomogeneous Self-Similar Measures

Mrinal Kanti Roychowdhury (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

We consider an inhomogeneous measure μ with the inhomogeneous part a self-similar measure ν, and show that for a given r ∈ (0,∞) the lower and the upper quantization dimensions of order r of μ are bounded below by the quantization dimension D r ( ν ) of ν and bounded above by a unique number κ r ( 0 , ) , related to the temperature function of the thermodynamic formalism that arises in the multifractal analysis of μ.

Currently displaying 1 – 3 of 3

Page 1