Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian
Soeren Fournais[1]; Bernard Helffer[1]
- [1] Université Paris-Sud CNRS & Laboratoire de Mathématiques UMR 8628 — Bât 425 91405 Orsay Cedex (France)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 1, page 1-67
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFournais, Soeren, and Helffer, Bernard. "Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian." Annales de l’institut Fourier 56.1 (2006): 1-67. <http://eudml.org/doc/10139>.
@article{Fournais2006,
abstract = {Motivated by the theory of superconductivity and more precisely by the problem of the onset of superconductivity in dimension two, many papers devoted to the analysis in a semi-classical regime of the lowest eigenvalue of the Schrödinger operator with magnetic field have appeared recently. Here we would like to mention the works by Bernoff-Sternberg, Lu-Pan, Del Pino-Felmer-Sternberg and Helffer-Morame and also Bauman-Phillips-Tang for the case of a disc. In the present paper we settle one important part of this question completely by proving an asymptotic expansion to all orders for low-lying eigenvalues for generic domains. The word ‘generic’ means in this context that the curvature of the boundary of the domain has a unique non-degenerate maximum.},
affiliation = {Université Paris-Sud CNRS & Laboratoire de Mathématiques UMR 8628 — Bât 425 91405 Orsay Cedex (France); Université Paris-Sud CNRS & Laboratoire de Mathématiques UMR 8628 — Bât 425 91405 Orsay Cedex (France)},
author = {Fournais, Soeren, Helffer, Bernard},
journal = {Annales de l’institut Fourier},
keywords = {semi-classical analysis; supraconductivity; Neumann Laplacian; magnetic Laplacian; superconductivity},
language = {eng},
number = {1},
pages = {1-67},
publisher = {Association des Annales de l’institut Fourier},
title = {Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian},
url = {http://eudml.org/doc/10139},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Fournais, Soeren
AU - Helffer, Bernard
TI - Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 1
SP - 1
EP - 67
AB - Motivated by the theory of superconductivity and more precisely by the problem of the onset of superconductivity in dimension two, many papers devoted to the analysis in a semi-classical regime of the lowest eigenvalue of the Schrödinger operator with magnetic field have appeared recently. Here we would like to mention the works by Bernoff-Sternberg, Lu-Pan, Del Pino-Felmer-Sternberg and Helffer-Morame and also Bauman-Phillips-Tang for the case of a disc. In the present paper we settle one important part of this question completely by proving an asymptotic expansion to all orders for low-lying eigenvalues for generic domains. The word ‘generic’ means in this context that the curvature of the boundary of the domain has a unique non-degenerate maximum.
LA - eng
KW - semi-classical analysis; supraconductivity; Neumann Laplacian; magnetic Laplacian; superconductivity
UR - http://eudml.org/doc/10139
ER -
References
top- S. Agmon, Lectures on exponential decay of solutions of second order elliptic equations, 29 (1982), Princeton University Press Zbl0503.35001MR745286
- P. Bauman, D. Phillips, Q. Tang, Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, Arch. Rational Mech. Anal. 142 (1998), 1-43 Zbl0922.35157MR1629119
- A. Bernoff, P. Sternberg, Onset of superconductivity in decreasing fields for general domains, J. Math. Phys. 39 (1998), 1272-1284 Zbl1056.82523MR1608449
- C. Bolley, B. Helffer, An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material, Ann. Inst. H. Poincaré (Section Physique Théorique) 58 (1993), 169-233 Zbl0779.35104MR1217119
- V. Bonnaillie, Analyse mathématique de la supraconductivité dans un domaine à coins : méthodes semi-classiques et numériques, (2003)
- V. Bonnaillie, On the fundamental state for a Schrödinger operator with magnetic fields in domains with corners, Asymptotic Anal. 41 (2005), 215-258 Zbl1067.35054MR2127997
- V. Bonnaillie-Noël, M. Dauge, Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners, (2005) Zbl1134.81021
- H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger Operators, (1987), Springer Verlag, Berlin Zbl0619.47005
- M. Dauge, B. Helffer, Eigenvalues variation I, Neumann problem for Sturm-Liouville operators, J. Differential Equations 104 (1993), 243-262 Zbl0784.34021MR1231468
- M. Dimassi, J. Sjöstrand, Spectral Asymptotics in the semi-classical limit, 268 (1999), Cambridge University Press Zbl0926.35002MR1735654
- S. Fournais, B. Helffer, Energy asymptotics for type II superconductors, (2004) Zbl1160.82365MR2174430
- V. V. Grušhin, Hypoelliptic differential equations and pseudodifferential operators with operator-valued symbols, Mat. Sb. (N.S.) 88 (1972), 504-521 Zbl0255.35022
- B. Helffer, Introduction to the semiclassical analysis for the Schrödinger operator and applications, 1336 (1988), Springer Verlag Zbl0647.35002
- B. Helffer, A. Mohamed, Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal. 138 (1996), 40-81 Zbl0851.58046MR1391630
- B. Helffer, A. Morame, Magnetic bottles in connection with superconductivity, J. Funct. Anal. 185 (2001), 604-680 Zbl1078.81023MR1856278
- B. Helffer, A. Morame, Magnetic bottles for the Neumann problem : curvature effect in the case of dimension 3 (General case), Ann. Sci. École Norm. Sup. 37 (2004), 105-170 Zbl1057.35061MR2050207
- B. Helffer, X. Pan, Upper critical field and location of surface nucleation of superconductivity, Ann. Inst. H. Poincaré (Section Analyse non linéaire) 20 (2003), 145-181 Zbl1060.35132MR1958165
- B. Helffer, J. Sjöstrand, Multiple wells in the semiclassical limit I, Comm. Partial Differential Equations 9 (1984), 337-408 Zbl0546.35053MR740094
- B. Helffer, J. Sjöstrand, Puits multiples en limite semi-classique II – Interaction moléculaire – Symétries – Perturbations, Ann. Inst. H. Poincaré (Section Physique théorique) 42 (1985), 127-212 Zbl0595.35031MR798695
- B. Helffer, J. Sjöstrand, Puits multiples en limite semiclassique V – le cas des minipuits, Current topics in partial differential equations (1986), 133-186, Kinokuniya, Tokyo Zbl0628.35024
- B. Helffer, J. Sjöstrand, Effet tunnel pour l’équation de Schrödinger avec champ magnétique, Ann. Scuola Norm. Sup. Pisa 14 (1987), 625-657 Zbl0699.35205MR963493
- K. Lu, X-B. Pan, Eigenvalue problems of Ginzburg-Landau operator in bounded domains, J. Math. Phys. 40 (1999), 2647-2670 Zbl0943.35058MR1694223
- K. Lu, X-B. Pan, Estimates of the upper critical field for the equations of superconductivity, Physica D 127 (1999), 73-104 Zbl0934.35174MR1678383
- K. Lu, X-B. Pan, Gauge invariant eigenvalue problems on and , Trans. Amer. Math. Soc. 352 (2000), 1247-1276 Zbl1053.35124MR1675206
- K. Lu, X-B. Pan, Surface nucleation of superconductivity in -dimension, J. of Differential Equations 168 (2000), 386-452 Zbl0972.35152MR1808455
- M. del Pino, P.L. Felmer, P. Sternberg, Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys. 210 (2000), 413-446 Zbl0982.35077MR1776839
- M. Reed, B. Simon, Methods of modern Mathematical Physics, IV: Analysis of operators, (1978), Academic Press, New York Zbl0401.47001MR493421
- D. Robert, Autour de l’approximation semi-classique, (1987), Birkhäuser, Boston Zbl0621.35001MR897108
- D. Saint-James, G. Sarma, E.J. Thomas, Type II Superconductivity, (1969), Pergamon, Oxford
- B. Simon, Semi-classical analysis of low lying eigenvalues I, Ann. Inst. H. Poincaré (Section Physique Théorique) 38 (1983), 295-307 Zbl0526.35027MR708966
- J. Sjöstrand, Operators of principal type with interior boundary conditions, Acta Math. 130 (1973), 1-51 Zbl0253.35076MR436226
- P. Sternberg, On the Normal/Superconducting Phase Transition in the Presence of Large Magnetic Fields, Connectivity and Superconductivity M 62 (2000), 188-199, BergerJ.J. Zbl0976.82056
- D.R. Tilley, J. Tilley, Superfluidity and superconductivity, (1990), Institute of Physics Publishing, Bristol and Philadelphia
- M. Tinkham, Introduction to Superconductivity, (1975), McGraw-Hill Inc, New York
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.