Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian

Soeren Fournais[1]; Bernard Helffer[1]

  • [1] Université Paris-Sud CNRS & Laboratoire de Mathématiques UMR 8628 — Bât 425 91405 Orsay Cedex (France)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 1, page 1-67
  • ISSN: 0373-0956

Abstract

top
Motivated by the theory of superconductivity and more precisely by the problem of the onset of superconductivity in dimension two, many papers devoted to the analysis in a semi-classical regime of the lowest eigenvalue of the Schrödinger operator with magnetic field have appeared recently. Here we would like to mention the works by Bernoff-Sternberg, Lu-Pan, Del Pino-Felmer-Sternberg and Helffer-Morame and also Bauman-Phillips-Tang for the case of a disc. In the present paper we settle one important part of this question completely by proving an asymptotic expansion to all orders for low-lying eigenvalues for generic domains. The word ‘generic’ means in this context that the curvature of the boundary of the domain has a unique non-degenerate maximum.

How to cite

top

Fournais, Soeren, and Helffer, Bernard. "Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian." Annales de l’institut Fourier 56.1 (2006): 1-67. <http://eudml.org/doc/10139>.

@article{Fournais2006,
abstract = {Motivated by the theory of superconductivity and more precisely by the problem of the onset of superconductivity in dimension two, many papers devoted to the analysis in a semi-classical regime of the lowest eigenvalue of the Schrödinger operator with magnetic field have appeared recently. Here we would like to mention the works by Bernoff-Sternberg, Lu-Pan, Del Pino-Felmer-Sternberg and Helffer-Morame and also Bauman-Phillips-Tang for the case of a disc. In the present paper we settle one important part of this question completely by proving an asymptotic expansion to all orders for low-lying eigenvalues for generic domains. The word ‘generic’ means in this context that the curvature of the boundary of the domain has a unique non-degenerate maximum.},
affiliation = {Université Paris-Sud CNRS & Laboratoire de Mathématiques UMR 8628 — Bât 425 91405 Orsay Cedex (France); Université Paris-Sud CNRS & Laboratoire de Mathématiques UMR 8628 — Bât 425 91405 Orsay Cedex (France)},
author = {Fournais, Soeren, Helffer, Bernard},
journal = {Annales de l’institut Fourier},
keywords = {semi-classical analysis; supraconductivity; Neumann Laplacian; magnetic Laplacian; superconductivity},
language = {eng},
number = {1},
pages = {1-67},
publisher = {Association des Annales de l’institut Fourier},
title = {Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian},
url = {http://eudml.org/doc/10139},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Fournais, Soeren
AU - Helffer, Bernard
TI - Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 1
SP - 1
EP - 67
AB - Motivated by the theory of superconductivity and more precisely by the problem of the onset of superconductivity in dimension two, many papers devoted to the analysis in a semi-classical regime of the lowest eigenvalue of the Schrödinger operator with magnetic field have appeared recently. Here we would like to mention the works by Bernoff-Sternberg, Lu-Pan, Del Pino-Felmer-Sternberg and Helffer-Morame and also Bauman-Phillips-Tang for the case of a disc. In the present paper we settle one important part of this question completely by proving an asymptotic expansion to all orders for low-lying eigenvalues for generic domains. The word ‘generic’ means in this context that the curvature of the boundary of the domain has a unique non-degenerate maximum.
LA - eng
KW - semi-classical analysis; supraconductivity; Neumann Laplacian; magnetic Laplacian; superconductivity
UR - http://eudml.org/doc/10139
ER -

References

top
  1. S. Agmon, Lectures on exponential decay of solutions of second order elliptic equations, 29 (1982), Princeton University Press Zbl0503.35001MR745286
  2. P. Bauman, D. Phillips, Q. Tang, Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, Arch. Rational Mech. Anal. 142 (1998), 1-43 Zbl0922.35157MR1629119
  3. A. Bernoff, P. Sternberg, Onset of superconductivity in decreasing fields for general domains, J. Math. Phys. 39 (1998), 1272-1284 Zbl1056.82523MR1608449
  4. C. Bolley, B. Helffer, An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material, Ann. Inst. H. Poincaré (Section Physique Théorique) 58 (1993), 169-233 Zbl0779.35104MR1217119
  5. V. Bonnaillie, Analyse mathématique de la supraconductivité dans un domaine à coins : méthodes semi-classiques et numériques, (2003) 
  6. V. Bonnaillie, On the fundamental state for a Schrödinger operator with magnetic fields in domains with corners, Asymptotic Anal. 41 (2005), 215-258 Zbl1067.35054MR2127997
  7. V. Bonnaillie-Noël, M. Dauge, Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners, (2005) Zbl1134.81021
  8. H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger Operators, (1987), Springer Verlag, Berlin Zbl0619.47005
  9. M. Dauge, B. Helffer, Eigenvalues variation I, Neumann problem for Sturm-Liouville operators, J. Differential Equations 104 (1993), 243-262 Zbl0784.34021MR1231468
  10. M. Dimassi, J. Sjöstrand, Spectral Asymptotics in the semi-classical limit, 268 (1999), Cambridge University Press Zbl0926.35002MR1735654
  11. S. Fournais, B. Helffer, Energy asymptotics for type II superconductors, (2004) Zbl1160.82365MR2174430
  12. V. V. Grušhin, Hypoelliptic differential equations and pseudodifferential operators with operator-valued symbols, Mat. Sb. (N.S.) 88 (1972), 504-521 Zbl0255.35022
  13. B. Helffer, Introduction to the semiclassical analysis for the Schrödinger operator and applications, 1336 (1988), Springer Verlag Zbl0647.35002
  14. B. Helffer, A. Mohamed, Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal. 138 (1996), 40-81 Zbl0851.58046MR1391630
  15. B. Helffer, A. Morame, Magnetic bottles in connection with superconductivity, J. Funct. Anal. 185 (2001), 604-680 Zbl1078.81023MR1856278
  16. B. Helffer, A. Morame, Magnetic bottles for the Neumann problem : curvature effect in the case of dimension 3 (General case), Ann. Sci. École Norm. Sup. 37 (2004), 105-170 Zbl1057.35061MR2050207
  17. B. Helffer, X. Pan, Upper critical field and location of surface nucleation of superconductivity, Ann. Inst. H. Poincaré (Section Analyse non linéaire) 20 (2003), 145-181 Zbl1060.35132MR1958165
  18. B. Helffer, J. Sjöstrand, Multiple wells in the semiclassical limit I, Comm. Partial Differential Equations 9 (1984), 337-408 Zbl0546.35053MR740094
  19. B. Helffer, J. Sjöstrand, Puits multiples en limite semi-classique II – Interaction moléculaire – Symétries – Perturbations, Ann. Inst. H. Poincaré (Section Physique théorique) 42 (1985), 127-212 Zbl0595.35031MR798695
  20. B. Helffer, J. Sjöstrand, Puits multiples en limite semiclassique V – le cas des minipuits, Current topics in partial differential equations (1986), 133-186, Kinokuniya, Tokyo Zbl0628.35024
  21. B. Helffer, J. Sjöstrand, Effet tunnel pour l’équation de Schrödinger avec champ magnétique, Ann. Scuola Norm. Sup. Pisa 14 (1987), 625-657 Zbl0699.35205MR963493
  22. K. Lu, X-B. Pan, Eigenvalue problems of Ginzburg-Landau operator in bounded domains, J. Math. Phys. 40 (1999), 2647-2670 Zbl0943.35058MR1694223
  23. K. Lu, X-B. Pan, Estimates of the upper critical field for the equations of superconductivity, Physica D 127 (1999), 73-104 Zbl0934.35174MR1678383
  24. K. Lu, X-B. Pan, Gauge invariant eigenvalue problems on 2 and + 2 , Trans. Amer. Math. Soc. 352 (2000), 1247-1276 Zbl1053.35124MR1675206
  25. K. Lu, X-B. Pan, Surface nucleation of superconductivity in 3 -dimension, J. of Differential Equations 168 (2000), 386-452 Zbl0972.35152MR1808455
  26. M. del Pino, P.L. Felmer, P. Sternberg, Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys. 210 (2000), 413-446 Zbl0982.35077MR1776839
  27. M. Reed, B. Simon, Methods of modern Mathematical Physics, IV: Analysis of operators, (1978), Academic Press, New York Zbl0401.47001MR493421
  28. D. Robert, Autour de l’approximation semi-classique, (1987), Birkhäuser, Boston Zbl0621.35001MR897108
  29. D. Saint-James, G. Sarma, E.J. Thomas, Type II Superconductivity, (1969), Pergamon, Oxford 
  30. B. Simon, Semi-classical analysis of low lying eigenvalues I, Ann. Inst. H. Poincaré (Section Physique Théorique) 38 (1983), 295-307 Zbl0526.35027MR708966
  31. J. Sjöstrand, Operators of principal type with interior boundary conditions, Acta Math. 130 (1973), 1-51 Zbl0253.35076MR436226
  32. P. Sternberg, On the Normal/Superconducting Phase Transition in the Presence of Large Magnetic Fields, Connectivity and Superconductivity M 62 (2000), 188-199, BergerJ.J. Zbl0976.82056
  33. D.R. Tilley, J. Tilley, Superfluidity and superconductivity, (1990), Institute of Physics Publishing, Bristol and Philadelphia 
  34. M. Tinkham, Introduction to Superconductivity, (1975), McGraw-Hill Inc, New York 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.