Semianalytic and subanalytic sets

Edward Bierstone; Pierre D. Milman

Publications Mathématiques de l'IHÉS (1988)

  • Volume: 67, page 5-42
  • ISSN: 0073-8301

How to cite

top

Bierstone, Edward, and Milman, Pierre D.. "Semianalytic and subanalytic sets." Publications Mathématiques de l'IHÉS 67 (1988): 5-42. <http://eudml.org/doc/104032>.

@article{Bierstone1988,
author = {Bierstone, Edward, Milman, Pierre D.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {semialgebraic sets; semianalytic sets; uniformization; rectilinearization; subanalytic sets; resolution of singularities},
language = {eng},
pages = {5-42},
publisher = {Institut des Hautes Études Scientifiques},
title = {Semianalytic and subanalytic sets},
url = {http://eudml.org/doc/104032},
volume = {67},
year = {1988},
}

TY - JOUR
AU - Bierstone, Edward
AU - Milman, Pierre D.
TI - Semianalytic and subanalytic sets
JO - Publications Mathématiques de l'IHÉS
PY - 1988
PB - Institut des Hautes Études Scientifiques
VL - 67
SP - 5
EP - 42
LA - eng
KW - semialgebraic sets; semianalytic sets; uniformization; rectilinearization; subanalytic sets; resolution of singularities
UR - http://eudml.org/doc/104032
ER -

References

top
  1. [1] E. BIERSTONE, Differentiable functions, Bol. Soc. Brasil Mat., 11 (1980), 139-180. Zbl0584.58006MR83k:58012
  2. [2] E. BIERSTONE and P. D. MILMAN, Algebras of composite differentiable functions, Proc. Sympos. Pure Math., 40, Part 1 (1983), 127-136. Zbl0519.58004MR85i:58012
  3. [3] P. J. COHEN, Decision procedures for real and p-adic fields, Comm. Pure Appl. Math., 22 (1969), 131-151. Zbl0167.01502MR39 #5342
  4. [4] M. COSTE, Ensembles semi-algébriques, Géométrie algébrique réelle et formes quadratiques (Proceedings, Rennes, 1981), Lecture Notes in Math., No. 959, Berlin-Heidelberg-New York, Springer, 1982, p. 109-138. Zbl0498.14012
  5. [5] J. DENEF and L. VAN DEN DRIES, p-adic and real subanalytic sets, Ann. of Math. (2) (to appear). Zbl0693.14012
  6. [6] Z. DENKOWSKA, S. ŁOJASIEWICZ and J. STASICA, Certaines propriétés élémentaires des ensembles sous-analytiques. Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979), 529-536. Zbl0435.32006MR81i:32003
  7. [7] Z. DENKOWSKA, S. ŁOJASIEWICZ and J. STASICA, Sur le théorème du complémentaire pour les ensembles sous-analytiques, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979), 537-539. Zbl0457.32003MR81i:32004
  8. [8] Z. DENKOWSKA, S. ŁOJASIEWICZ and J. STASICA, Sur le nombre des composantes connexes de la section d'un sous-analytique, Bull. Acad. Polon. Sci. Sér. Sci. Math., 30 (1982), 333-335. Zbl0527.32007MR86a:32014
  9. [9] Z. DENKOWSKA and J. STASICA, Ensembles sous-analytiques à la polonaise (preprint, 1985). 
  10. [10] G. EFROYMSON, Substitution in Nash functions, Pacific J. Math., 63 (1976), 137-145. Zbl0335.14002MR53 #13211
  11. [11] A. M. GABRIELOV, Projections of semi-analytic sets, Functional Anal. Appl., 2 (1968), 282-291 = Funkcional. Anal. i Prilozen. 2, No. 4 (1968), 18-30. Zbl0179.08503MR39 #7137
  12. [12] A. M. GABRIELOV, Formal relations between analytic functions, Math. USSR Izvestija, 7 (1973), 1056-1088 = Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), 1056-1090. Zbl0297.32007
  13. [13] R. M. HARDT, Stratification of real analytic mappings and images, Invent. Math., 28 (1975), 193-208. Zbl0298.32003MR51 #8453
  14. [14] R. M. HARDT, Triangulation of subanalytic sets and proper light subanalytic maps, Invent. Math., 38 (1977), 207-217. Zbl0331.32006MR56 #12302
  15. [15] R. M. HARDT, Some analytic bounds for subanalytic sets, Differential Geometric Control Theory, Boston, Birkhäuser, 1983, p. 259-267. Zbl0547.32003MR86c:32003
  16. [16] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II, Ann. of Math. (2), 79 (1964), 109-326. Zbl0122.38603MR33 #7333
  17. [17] H. HIRONAKA, Subanalytic sets, Number Theory, Algebraic Geometry and Commutative Algebra, Tokyo, Kinokuniya, 1973, p. 453-493. Zbl0297.32008MR51 #13275
  18. [18] H. HIRONAKA, Introduction to real-analytic sets and real-analytic maps, Istituto Matematico “L. Tonelli”, Pisa, 1973. MR57 #16665
  19. [19] S. ŁOJASIEWICZ, Sur le problème de la division, Studia Math., 8 (1959), 87-136. Zbl0115.10203MR21 #5893
  20. [20] S. ŁOJASIEWICZ, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa (3), 18 (1964), 449-474. Zbl0128.17101MR30 #3478
  21. [21] S. ŁOJASIEWICZ, Ensembles semi-analytiques, Inst. Hautes Études Sci., Bures-sur-Yvette, 1964. 
  22. [22] S. ŁOJASIEWICZ, Sur la semi-analyticité des images inverses par l'application-tangente, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979), 525-527. Zbl0452.32005MR81i:32005
  23. [23] B. MALGRANGE, Frobenius avec singularités, 2. Le cas général, Invent. Math., 39 (1977), 67-89. Zbl0375.32012MR58 #22685b
  24. [24] R. NARASIMHAN, Introduction to the theory of analytic spaces, Lecture Notes in Math., No. 25, Berlin-Heidelberg-New York, Springer, 1966. Zbl0168.06003MR36 #428
  25. [25] J.-B. POLY and G. RABY, Fonction distance et singularités, Bull. Sci. Math. (2), 108 (1984), 187-195. Zbl0547.58011MR86d:32008
  26. [26] M. TAMM, Subanalytic sets in the calculus of variations, Acta Math., 146 (1981), 167-199. Zbl0478.58010MR82h:32012
  27. [27] H. WHITNEY, Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton, Princeton Univ. Press, 1965, p. 205-244. Zbl0129.39402MR32 #5924
  28. [28] O. ZARISKI, Local uniformization theorem on algebraic varieties, Ann. of Math. (2), 41 (1940), 852-896. Zbl0025.21601MR2,124aJFM66.1327.02
  29. [29] O. ZARISKI and P. SAMUEL, Commutative Algebra, Vol. II, Berlin-Heidelberg-New York, Springer, 1975. Zbl0322.13001

Citations in EuDML Documents

top
  1. S. Łojasiewicz, Sur l'adhérence d'un ensemble partiellement semi-algébrique
  2. Wiesław Pawłucki, Examples of functions -extendable for each finite, but not -extendable
  3. Janusz Gwoździewicz, Growth at infinity of a polynomial with a compact zero set
  4. Olivier Le Gal, Jean-Philippe Rolin, An o-minimal structure which does not admit C cellular decomposition
  5. Yves Benoist, Convexes hyperboliques et fonctions quasisymétriques
  6. F. Nier, Théorie de la diffusion pour les opérateurs analytiquement décomposables
  7. Krzysztof Jan Nowak, On a universal axiomatization of the real closed fields
  8. Hans Schoutens, Rigid subanalytic sets
  9. Jacques Chaumat, Anne-Marie Chollet, Sur la division et la composition dans des classes ultradifférentiables
  10. Jonathan Pila, Rational points on a subanalytic surface

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.