Semianalytic and subanalytic sets
Edward Bierstone; Pierre D. Milman
Publications Mathématiques de l'IHÉS (1988)
- Volume: 67, page 5-42
- ISSN: 0073-8301
Access Full Article
topHow to cite
topBierstone, Edward, and Milman, Pierre D.. "Semianalytic and subanalytic sets." Publications Mathématiques de l'IHÉS 67 (1988): 5-42. <http://eudml.org/doc/104032>.
@article{Bierstone1988,
author = {Bierstone, Edward, Milman, Pierre D.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {semialgebraic sets; semianalytic sets; uniformization; rectilinearization; subanalytic sets; resolution of singularities},
language = {eng},
pages = {5-42},
publisher = {Institut des Hautes Études Scientifiques},
title = {Semianalytic and subanalytic sets},
url = {http://eudml.org/doc/104032},
volume = {67},
year = {1988},
}
TY - JOUR
AU - Bierstone, Edward
AU - Milman, Pierre D.
TI - Semianalytic and subanalytic sets
JO - Publications Mathématiques de l'IHÉS
PY - 1988
PB - Institut des Hautes Études Scientifiques
VL - 67
SP - 5
EP - 42
LA - eng
KW - semialgebraic sets; semianalytic sets; uniformization; rectilinearization; subanalytic sets; resolution of singularities
UR - http://eudml.org/doc/104032
ER -
References
top- [1] E. BIERSTONE, Differentiable functions, Bol. Soc. Brasil Mat., 11 (1980), 139-180. Zbl0584.58006MR83k:58012
- [2] E. BIERSTONE and P. D. MILMAN, Algebras of composite differentiable functions, Proc. Sympos. Pure Math., 40, Part 1 (1983), 127-136. Zbl0519.58004MR85i:58012
- [3] P. J. COHEN, Decision procedures for real and p-adic fields, Comm. Pure Appl. Math., 22 (1969), 131-151. Zbl0167.01502MR39 #5342
- [4] M. COSTE, Ensembles semi-algébriques, Géométrie algébrique réelle et formes quadratiques (Proceedings, Rennes, 1981), Lecture Notes in Math., No. 959, Berlin-Heidelberg-New York, Springer, 1982, p. 109-138. Zbl0498.14012
- [5] J. DENEF and L. VAN DEN DRIES, p-adic and real subanalytic sets, Ann. of Math. (2) (to appear). Zbl0693.14012
- [6] Z. DENKOWSKA, S. ŁOJASIEWICZ and J. STASICA, Certaines propriétés élémentaires des ensembles sous-analytiques. Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979), 529-536. Zbl0435.32006MR81i:32003
- [7] Z. DENKOWSKA, S. ŁOJASIEWICZ and J. STASICA, Sur le théorème du complémentaire pour les ensembles sous-analytiques, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979), 537-539. Zbl0457.32003MR81i:32004
- [8] Z. DENKOWSKA, S. ŁOJASIEWICZ and J. STASICA, Sur le nombre des composantes connexes de la section d'un sous-analytique, Bull. Acad. Polon. Sci. Sér. Sci. Math., 30 (1982), 333-335. Zbl0527.32007MR86a:32014
- [9] Z. DENKOWSKA and J. STASICA, Ensembles sous-analytiques à la polonaise (preprint, 1985).
- [10] G. EFROYMSON, Substitution in Nash functions, Pacific J. Math., 63 (1976), 137-145. Zbl0335.14002MR53 #13211
- [11] A. M. GABRIELOV, Projections of semi-analytic sets, Functional Anal. Appl., 2 (1968), 282-291 = Funkcional. Anal. i Prilozen. 2, No. 4 (1968), 18-30. Zbl0179.08503MR39 #7137
- [12] A. M. GABRIELOV, Formal relations between analytic functions, Math. USSR Izvestija, 7 (1973), 1056-1088 = Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), 1056-1090. Zbl0297.32007
- [13] R. M. HARDT, Stratification of real analytic mappings and images, Invent. Math., 28 (1975), 193-208. Zbl0298.32003MR51 #8453
- [14] R. M. HARDT, Triangulation of subanalytic sets and proper light subanalytic maps, Invent. Math., 38 (1977), 207-217. Zbl0331.32006MR56 #12302
- [15] R. M. HARDT, Some analytic bounds for subanalytic sets, Differential Geometric Control Theory, Boston, Birkhäuser, 1983, p. 259-267. Zbl0547.32003MR86c:32003
- [16] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II, Ann. of Math. (2), 79 (1964), 109-326. Zbl0122.38603MR33 #7333
- [17] H. HIRONAKA, Subanalytic sets, Number Theory, Algebraic Geometry and Commutative Algebra, Tokyo, Kinokuniya, 1973, p. 453-493. Zbl0297.32008MR51 #13275
- [18] H. HIRONAKA, Introduction to real-analytic sets and real-analytic maps, Istituto Matematico “L. Tonelli”, Pisa, 1973. MR57 #16665
- [19] S. ŁOJASIEWICZ, Sur le problème de la division, Studia Math., 8 (1959), 87-136. Zbl0115.10203MR21 #5893
- [20] S. ŁOJASIEWICZ, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa (3), 18 (1964), 449-474. Zbl0128.17101MR30 #3478
- [21] S. ŁOJASIEWICZ, Ensembles semi-analytiques, Inst. Hautes Études Sci., Bures-sur-Yvette, 1964.
- [22] S. ŁOJASIEWICZ, Sur la semi-analyticité des images inverses par l'application-tangente, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979), 525-527. Zbl0452.32005MR81i:32005
- [23] B. MALGRANGE, Frobenius avec singularités, 2. Le cas général, Invent. Math., 39 (1977), 67-89. Zbl0375.32012MR58 #22685b
- [24] R. NARASIMHAN, Introduction to the theory of analytic spaces, Lecture Notes in Math., No. 25, Berlin-Heidelberg-New York, Springer, 1966. Zbl0168.06003MR36 #428
- [25] J.-B. POLY and G. RABY, Fonction distance et singularités, Bull. Sci. Math. (2), 108 (1984), 187-195. Zbl0547.58011MR86d:32008
- [26] M. TAMM, Subanalytic sets in the calculus of variations, Acta Math., 146 (1981), 167-199. Zbl0478.58010MR82h:32012
- [27] H. WHITNEY, Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton, Princeton Univ. Press, 1965, p. 205-244. Zbl0129.39402MR32 #5924
- [28] O. ZARISKI, Local uniformization theorem on algebraic varieties, Ann. of Math. (2), 41 (1940), 852-896. Zbl0025.21601MR2,124aJFM66.1327.02
- [29] O. ZARISKI and P. SAMUEL, Commutative Algebra, Vol. II, Berlin-Heidelberg-New York, Springer, 1975. Zbl0322.13001
Citations in EuDML Documents
top- S. Łojasiewicz, Sur l'adhérence d'un ensemble partiellement semi-algébrique
- Wiesław Pawłucki, Examples of functions -extendable for each finite, but not -extendable
- Janusz Gwoździewicz, Growth at infinity of a polynomial with a compact zero set
- Olivier Le Gal, Jean-Philippe Rolin, An o-minimal structure which does not admit cellular decomposition
- Yves Benoist, Convexes hyperboliques et fonctions quasisymétriques
- F. Nier, Théorie de la diffusion pour les opérateurs analytiquement décomposables
- Krzysztof Jan Nowak, On a universal axiomatization of the real closed fields
- Hans Schoutens, Rigid subanalytic sets
- Jacques Chaumat, Anne-Marie Chollet, Sur la division et la composition dans des classes ultradifférentiables
- Jonathan Pila, Rational points on a subanalytic surface
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.