H1/2 maps with values into the circle : minimal connections, lifting, and the Ginzburg–Landau equation

Jean Bourgain; Haim Brezis; Petru Mironescu

Publications Mathématiques de l'IHÉS (2004)

  • Volume: 99, page 1-115
  • ISSN: 0073-8301

How to cite

top

Bourgain, Jean, Brezis, Haim, and Mironescu, Petru. "H1/2 maps with values into the circle : minimal connections, lifting, and the Ginzburg–Landau equation." Publications Mathématiques de l'IHÉS 99 (2004): 1-115. <http://eudml.org/doc/104206>.

@article{Bourgain2004,
author = {Bourgain, Jean, Brezis, Haim, Mironescu, Petru},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Ginzburg-Landau equation; minimization problem; minimal connection; topological degree; lifting},
language = {eng},
pages = {1-115},
publisher = {Springer},
title = {H1/2 maps with values into the circle : minimal connections, lifting, and the Ginzburg–Landau equation},
url = {http://eudml.org/doc/104206},
volume = {99},
year = {2004},
}

TY - JOUR
AU - Bourgain, Jean
AU - Brezis, Haim
AU - Mironescu, Petru
TI - H1/2 maps with values into the circle : minimal connections, lifting, and the Ginzburg–Landau equation
JO - Publications Mathématiques de l'IHÉS
PY - 2004
PB - Springer
VL - 99
SP - 1
EP - 115
LA - eng
KW - Ginzburg-Landau equation; minimization problem; minimal connection; topological degree; lifting
UR - http://eudml.org/doc/104206
ER -

References

top
  1. 1. R. A. Adams, Sobolev spaces, Acad. Press, 1975. Zbl0314.46030MR450957
  2. 2. F. Almgren, W. Browder, and E. H. Lieb, Co-area, liquid crystals and minimal surfaces, in: Partial differential equations (Tianjin, 1986), Lect. Notes Math. 1306, Springer, 1988. Zbl0645.58015MR1032767
  3. 3. F. Bethuel, A characterization of maps in H1(B3,S2) which can be approximated by smooth maps, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 7 (1990), 269–286. Zbl0708.58004MR1067776
  4. 4. F. Bethuel, Approximations in trace spaces defined between manifolds, Nonlinear Anal. Theory Methods Appl., 24 (1995), 121–130. Zbl0824.58011MR1308474
  5. 5. F. Bethuel, J. Bourgain, H. Brezis, and G. Orlandi, W1,p estimate for solutions to the Ginzburg–Landau equation with boundary data in H1/2, C. R. Acad. Sci., Paris, Sér. I, Math., 333 (2001), 1069–1076. Zbl1080.35020MR1881236
  6. 6. F. Bethuel, H. Brezis, and J.-M. Coron, Relaxed energies for harmonic maps, in: H. Berestycki, J.-M. Coron, and I. Ekeland (eds.), Variational Problems, pp. 37–52, Birkhäuser, 1990. Zbl0793.58011MR1205144
  7. 7. F. Bethuel, H. Brezis, and F. Hélein, Asymptotics for the minimization of a Ginzburg–Landau functional, Calc. Var. Partial Differ. Equ., 1 (1993), 123–148. Zbl0834.35014MR1261720
  8. 8. F. Bethuel, H. Brezis, and G. Orlandi, Small energy solutions to the Ginzburg–Landau equation, C. R. Acad. Sci., Paris, Sér. I, 331 (2000), 763–770. Zbl0969.35055MR1807186
  9. 9. F. Bethuel, H. Brezis, and G. Orlandi, Asymptotics for the Ginzburg–Landau equation in arbitrary dimensions, J. Funct. Anal., 186 (2001), 432–520. Zbl1077.35047MR1864830
  10. 10. F. Bethuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., 80 (1988), 60–75. Zbl0657.46027MR960223
  11. 11. J. Bourgain and H. Brezis, On the equation div Y=f and application to control of phases, J. Am. Math. Soc., 16 (2003), 393–426. Zbl1075.35006MR1949165
  12. 12. J. Bourgain, H. Brezis, and P. Mironescu, Lifting in Sobolev spaces, J. Anal. Math., 80 (2000), 37–86. Zbl0967.46026MR1771523
  13. 13. J. Bourgain, H. Brezis, and P. Mironescu, On the structure of the Sobolev space H1/2 with values into the circle, C. R. Acad. Sci., Paris, Sér. I, 310 (2000), 119–124. Zbl0970.35069MR1781527
  14. 14. J. Bourgain, H. Brezis, and P. Mironescu, Another look at Sobolev spaces, in: J. L. Menaldi, E. Rofman, and A. Sulem (eds.), Optimal Control and Partial Differential Equations, pp. 439–455, IOS Press, 2001. Zbl1103.46310
  15. 15. J. Bourgain, H. Brezis, and P. Mironescu, Limiting embedding theorems for Ws,p when s 1 and applications, J. Anal. Math., 87 (2002), 77–101. Zbl1029.46030MR1945278
  16. 16. J. Bourgain, H. Brezis, and P. Mironescu, Lifting, degree and distibutional Jacobian revisited, to appear in Commun. Pure Appl. Math. Zbl1077.46023MR2119868
  17. 17. A. Boutet de Monvel, V. Georgescu, and R. Purice, A boundary value problem related to the Ginzburg–Landau model, Commun. Math. Phys., 142 (1991), 1–23. Zbl0742.35045MR1137773
  18. 18. H. Brezis, Liquid crystals and energy estimates for S2-valued maps, in: J. Ericksen and D. Kinderlehrer (eds.), Theory and Applications of Liquid Crystals, pp. 31–52, Springer, 1987. MR900828
  19. 19. H. Brezis, J.-M. Coron, and E. Lieb, Harmonic maps with defects, Commun. Math. Phys., 107 (1986), 649–705. Zbl0608.58016MR868739
  20. 20. H. Brezis, Y. Y. Li, P. Mironescu, and L. Nirenberg, Degree and Sobolev spaces, Topol. Methods Nonlinear Anal., 13 (1999), 181–190. Zbl0956.46024MR1742219
  21. 21. H. Brezis and P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evolution Equ., 1 (2001), 387–404. Zbl1023.46031MR1877265
  22. 22. H. Brezis and L. Nirenberg, Degree Theory and BMO, Part I: Compact manifolds without boundaries, Sel. Math., 1 (1995), 197–263. Zbl0852.58010MR1354598
  23. 23. A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore, Harmonic analysis of the space BV, Rev. Mat. Iberoam., 19 (2003), 235–263. Zbl1044.42028MR1993422
  24. 24. F. Demengel, Une caractérisation des fonctions de W1,1(Bn ,S1) qui peuvent être approchées par des fonctions régulières, C. R. Acad. Sci., Paris, Sér. I, 310 (1990), 553–557. Zbl0693.46042MR1050130
  25. 25. M. Escobedo, Some remarks on the density of regular mappings in Sobolev classes of SM-valued functions, Rev. Mat. Univ. Complut. Madrid, 1 (1988), 127–144. Zbl0678.46028MR977045
  26. 26. H. Federer, Geometric measure theory, Springer, 1969. Zbl0874.49001MR257325
  27. 27. M. Giaquinta, G. Modica, and J. Soucek, Cartesian Currents in the Calculus of Variations, vol. II, Springer, 1998. Zbl0914.49001MR1645086
  28. 28. F. B. Hang and F. H. Lin, A remark on the Jacobians, Comm. Contemp. Math., 2 (2000), 35–46. Zbl1033.49047MR1753137
  29. 29. R. Hardt, D. Kinderlehrer, and F. H. Lin, Stable defects of minimizers of constrained variational principles, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 5 (1988), 297–322. Zbl0657.49018MR963102
  30. 30. T. Iwaniec, C. Scott, and B. Stroffolini, Nonlinear Hodge theory on manifolds with boundary, Ann. Mat. Pura Appl., 157 (1999), 37–115. Zbl0963.58003MR1747627
  31. 31. R. L. Jerrard and H. M. Soner, Rectifiability of the distributional Jacobian for a class of functions, C. R. Acad. Sci., Paris, Sér. I, 329 (1999), 683–688. Zbl0946.49033MR1724082
  32. 32. R. L. Jerrard and H. M. Soner, Functions of bounded higher variation, Indiana Univ. Math. J., 51 (2002), 645–677. Zbl1057.49036MR1911049
  33. 33. R. L. Jerrard and H. M. Soner, The Jacobian and the Ginzburg–Landau energy, Calc. Var. Partial Differ. Equ., 14 (2002), 151–191. Zbl1034.35025MR1890398
  34. 34. F. H. Lin and T. Rivière, Complex Ginzburg–Landau equations in high dimensions and codimension two area minimizing currents, J. Eur. Math. Soc., 1 (1999), 237–311; Erratum 2 (2002), 87–91. Zbl0939.35056MR1750451
  35. 35. V. Maz’ya and T. Shaposhnikova, On the Bourgain, Brezis and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 195 (2002), 230–238. Zbl1028.46050
  36. 36. A. Ponce, On the distributions of the form i ( δ p i - δ n i ) , J. Funct. Anal., 210 (2004), 391–435; part of the results were announced in a note by the same author: On the distributions of the form i ( δ p i - δ n i ) , C. R. Acad. Sci., Paris Sér. I, Math., 336 (2003), 571–576. Zbl1031.46045MR2053493
  37. 37. T. Rivière, Line vortices in the U(1)-Higgs model, Control Optim. Calc. Var., 1 (1996), 77–167. Zbl0874.53019MR1394302
  38. 38. T. Rivière, Dense subsets of H1/2(S2;S1), Ann. Global Anal. Geom., 18 (2000), 517–528. Zbl0960.35022MR1790711
  39. 39. E. Sandier, Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal., 152 (1998), 379–403. Zbl0908.58004MR1607928
  40. 40. E. Sandier, Ginzburg–Landau minimizers from R n+1 to R n and minimal connections, Indiana Univ. Math. J., 50 (2001), 1807–1844. Zbl1034.58016MR1889083
  41. 41. R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom., 18 (1983), 253–268. Zbl0547.58020MR710054
  42. 42. L. Simon, Lectures on geometric measure theory, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. Zbl0546.49019MR756417
  43. 43. D. Smets, On some infinite sums of integer valued Dirac’s masses, C. R. Acad. Sci., Paris, Sér. I, 334 (2002), 371–374. Zbl1154.46308
  44. 44. V. A. Solonnikov, Inequalities for functions of the classes W p ( 𝐑 𝐧 ) , J. Soviet Math., 3 (1975), 549–564. Zbl0349.46037
  45. 45. H. Triebel, Interpolation theory. Function spaces. Differential operators, Johann Ambrosius Barth, Heidelberg, Leipzig, 1995. Zbl0830.46028MR1328645
  46. 46. G. Alberti, S. Baldo, and G. Orlandi, Variational convergence for functionals of Ginzburg–Landau type, to appear. Zbl1160.35013MR2177107
  47. 47. F. Bethuel, G. Orlandi, and D. Smets, On an open problem for Jacobians raised by Bourgain, Brezis and Mironescu, C. R. Acad Sci., Paris, Sér. I, 337 (2003), 381–385. Zbl1113.35315MR2015080
  48. 48. F. Bethuel, G. Orlandi, and D. Smets, Approximation with vorticity bounds for the Ginzburg–Landau functional, to appear in Comm. Contemp. Math. Zbl1129.35329MR2100765
  49. 49. J. Bourgain and H. Brezis, New estimates for the Laplacian, the div-curl, and related Hodge systems, C. R. Acad Sci., Paris, Sér. I, 338 (2004), 539–543. Zbl1101.35013MR2057026
  50. 50. H. Federer and W. H. Fleming, Normal and integral currents, Ann. Math., 72 (1960), 458–520. Zbl0187.31301MR123260
  51. 51. A. Ponce, An estimate in the spirit of Poincaré’s inequality, J. Eur. Math. Soc., 6 (2004), 1–15. Zbl1051.46019
  52. 52. J. Van Schaftingen, On an inequality of Bourgain, Brezis and Mironescu, C. R. Acad Sci., Paris, Sér. I, 338 (2004), 23–26. Zbl1188.26015MR2038078

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.