H1/2 maps with values into the circle : minimal connections, lifting, and the Ginzburg–Landau equation
Jean Bourgain; Haim Brezis; Petru Mironescu
Publications Mathématiques de l'IHÉS (2004)
- Volume: 99, page 1-115
- ISSN: 0073-8301
Access Full Article
topHow to cite
topBourgain, Jean, Brezis, Haim, and Mironescu, Petru. "H1/2 maps with values into the circle : minimal connections, lifting, and the Ginzburg–Landau equation." Publications Mathématiques de l'IHÉS 99 (2004): 1-115. <http://eudml.org/doc/104206>.
@article{Bourgain2004,
author = {Bourgain, Jean, Brezis, Haim, Mironescu, Petru},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Ginzburg-Landau equation; minimization problem; minimal connection; topological degree; lifting},
language = {eng},
pages = {1-115},
publisher = {Springer},
title = {H1/2 maps with values into the circle : minimal connections, lifting, and the Ginzburg–Landau equation},
url = {http://eudml.org/doc/104206},
volume = {99},
year = {2004},
}
TY - JOUR
AU - Bourgain, Jean
AU - Brezis, Haim
AU - Mironescu, Petru
TI - H1/2 maps with values into the circle : minimal connections, lifting, and the Ginzburg–Landau equation
JO - Publications Mathématiques de l'IHÉS
PY - 2004
PB - Springer
VL - 99
SP - 1
EP - 115
LA - eng
KW - Ginzburg-Landau equation; minimization problem; minimal connection; topological degree; lifting
UR - http://eudml.org/doc/104206
ER -
References
top- 1. R. A. Adams, Sobolev spaces, Acad. Press, 1975. Zbl0314.46030MR450957
- 2. F. Almgren, W. Browder, and E. H. Lieb, Co-area, liquid crystals and minimal surfaces, in: Partial differential equations (Tianjin, 1986), Lect. Notes Math. 1306, Springer, 1988. Zbl0645.58015MR1032767
- 3. F. Bethuel, A characterization of maps in H1(B3,S2) which can be approximated by smooth maps, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 7 (1990), 269–286. Zbl0708.58004MR1067776
- 4. F. Bethuel, Approximations in trace spaces defined between manifolds, Nonlinear Anal. Theory Methods Appl., 24 (1995), 121–130. Zbl0824.58011MR1308474
- 5. F. Bethuel, J. Bourgain, H. Brezis, and G. Orlandi, W1,p estimate for solutions to the Ginzburg–Landau equation with boundary data in H1/2, C. R. Acad. Sci., Paris, Sér. I, Math., 333 (2001), 1069–1076. Zbl1080.35020MR1881236
- 6. F. Bethuel, H. Brezis, and J.-M. Coron, Relaxed energies for harmonic maps, in: H. Berestycki, J.-M. Coron, and I. Ekeland (eds.), Variational Problems, pp. 37–52, Birkhäuser, 1990. Zbl0793.58011MR1205144
- 7. F. Bethuel, H. Brezis, and F. Hélein, Asymptotics for the minimization of a Ginzburg–Landau functional, Calc. Var. Partial Differ. Equ., 1 (1993), 123–148. Zbl0834.35014MR1261720
- 8. F. Bethuel, H. Brezis, and G. Orlandi, Small energy solutions to the Ginzburg–Landau equation, C. R. Acad. Sci., Paris, Sér. I, 331 (2000), 763–770. Zbl0969.35055MR1807186
- 9. F. Bethuel, H. Brezis, and G. Orlandi, Asymptotics for the Ginzburg–Landau equation in arbitrary dimensions, J. Funct. Anal., 186 (2001), 432–520. Zbl1077.35047MR1864830
- 10. F. Bethuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., 80 (1988), 60–75. Zbl0657.46027MR960223
- 11. J. Bourgain and H. Brezis, On the equation div Y=f and application to control of phases, J. Am. Math. Soc., 16 (2003), 393–426. Zbl1075.35006MR1949165
- 12. J. Bourgain, H. Brezis, and P. Mironescu, Lifting in Sobolev spaces, J. Anal. Math., 80 (2000), 37–86. Zbl0967.46026MR1771523
- 13. J. Bourgain, H. Brezis, and P. Mironescu, On the structure of the Sobolev space H1/2 with values into the circle, C. R. Acad. Sci., Paris, Sér. I, 310 (2000), 119–124. Zbl0970.35069MR1781527
- 14. J. Bourgain, H. Brezis, and P. Mironescu, Another look at Sobolev spaces, in: J. L. Menaldi, E. Rofman, and A. Sulem (eds.), Optimal Control and Partial Differential Equations, pp. 439–455, IOS Press, 2001. Zbl1103.46310
- 15. J. Bourgain, H. Brezis, and P. Mironescu, Limiting embedding theorems for Ws,p when and applications, J. Anal. Math., 87 (2002), 77–101. Zbl1029.46030MR1945278
- 16. J. Bourgain, H. Brezis, and P. Mironescu, Lifting, degree and distibutional Jacobian revisited, to appear in Commun. Pure Appl. Math. Zbl1077.46023MR2119868
- 17. A. Boutet de Monvel, V. Georgescu, and R. Purice, A boundary value problem related to the Ginzburg–Landau model, Commun. Math. Phys., 142 (1991), 1–23. Zbl0742.35045MR1137773
- 18. H. Brezis, Liquid crystals and energy estimates for S2-valued maps, in: J. Ericksen and D. Kinderlehrer (eds.), Theory and Applications of Liquid Crystals, pp. 31–52, Springer, 1987. MR900828
- 19. H. Brezis, J.-M. Coron, and E. Lieb, Harmonic maps with defects, Commun. Math. Phys., 107 (1986), 649–705. Zbl0608.58016MR868739
- 20. H. Brezis, Y. Y. Li, P. Mironescu, and L. Nirenberg, Degree and Sobolev spaces, Topol. Methods Nonlinear Anal., 13 (1999), 181–190. Zbl0956.46024MR1742219
- 21. H. Brezis and P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evolution Equ., 1 (2001), 387–404. Zbl1023.46031MR1877265
- 22. H. Brezis and L. Nirenberg, Degree Theory and BMO, Part I: Compact manifolds without boundaries, Sel. Math., 1 (1995), 197–263. Zbl0852.58010MR1354598
- 23. A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore, Harmonic analysis of the space BV, Rev. Mat. Iberoam., 19 (2003), 235–263. Zbl1044.42028MR1993422
- 24. F. Demengel, Une caractérisation des fonctions de W1,1(Bn ,S1) qui peuvent être approchées par des fonctions régulières, C. R. Acad. Sci., Paris, Sér. I, 310 (1990), 553–557. Zbl0693.46042MR1050130
- 25. M. Escobedo, Some remarks on the density of regular mappings in Sobolev classes of SM-valued functions, Rev. Mat. Univ. Complut. Madrid, 1 (1988), 127–144. Zbl0678.46028MR977045
- 26. H. Federer, Geometric measure theory, Springer, 1969. Zbl0874.49001MR257325
- 27. M. Giaquinta, G. Modica, and J. Soucek, Cartesian Currents in the Calculus of Variations, vol. II, Springer, 1998. Zbl0914.49001MR1645086
- 28. F. B. Hang and F. H. Lin, A remark on the Jacobians, Comm. Contemp. Math., 2 (2000), 35–46. Zbl1033.49047MR1753137
- 29. R. Hardt, D. Kinderlehrer, and F. H. Lin, Stable defects of minimizers of constrained variational principles, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 5 (1988), 297–322. Zbl0657.49018MR963102
- 30. T. Iwaniec, C. Scott, and B. Stroffolini, Nonlinear Hodge theory on manifolds with boundary, Ann. Mat. Pura Appl., 157 (1999), 37–115. Zbl0963.58003MR1747627
- 31. R. L. Jerrard and H. M. Soner, Rectifiability of the distributional Jacobian for a class of functions, C. R. Acad. Sci., Paris, Sér. I, 329 (1999), 683–688. Zbl0946.49033MR1724082
- 32. R. L. Jerrard and H. M. Soner, Functions of bounded higher variation, Indiana Univ. Math. J., 51 (2002), 645–677. Zbl1057.49036MR1911049
- 33. R. L. Jerrard and H. M. Soner, The Jacobian and the Ginzburg–Landau energy, Calc. Var. Partial Differ. Equ., 14 (2002), 151–191. Zbl1034.35025MR1890398
- 34. F. H. Lin and T. Rivière, Complex Ginzburg–Landau equations in high dimensions and codimension two area minimizing currents, J. Eur. Math. Soc., 1 (1999), 237–311; Erratum 2 (2002), 87–91. Zbl0939.35056MR1750451
- 35. V. Maz’ya and T. Shaposhnikova, On the Bourgain, Brezis and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 195 (2002), 230–238. Zbl1028.46050
- 36. A. Ponce, On the distributions of the form , J. Funct. Anal., 210 (2004), 391–435; part of the results were announced in a note by the same author: On the distributions of the form , C. R. Acad. Sci., Paris Sér. I, Math., 336 (2003), 571–576. Zbl1031.46045MR2053493
- 37. T. Rivière, Line vortices in the U(1)-Higgs model, Control Optim. Calc. Var., 1 (1996), 77–167. Zbl0874.53019MR1394302
- 38. T. Rivière, Dense subsets of H1/2(S2;S1), Ann. Global Anal. Geom., 18 (2000), 517–528. Zbl0960.35022MR1790711
- 39. E. Sandier, Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal., 152 (1998), 379–403. Zbl0908.58004MR1607928
- 40. E. Sandier, Ginzburg–Landau minimizers from R n+1 to R n and minimal connections, Indiana Univ. Math. J., 50 (2001), 1807–1844. Zbl1034.58016MR1889083
- 41. R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom., 18 (1983), 253–268. Zbl0547.58020MR710054
- 42. L. Simon, Lectures on geometric measure theory, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. Zbl0546.49019MR756417
- 43. D. Smets, On some infinite sums of integer valued Dirac’s masses, C. R. Acad. Sci., Paris, Sér. I, 334 (2002), 371–374. Zbl1154.46308
- 44. V. A. Solonnikov, Inequalities for functions of the classes , J. Soviet Math., 3 (1975), 549–564. Zbl0349.46037
- 45. H. Triebel, Interpolation theory. Function spaces. Differential operators, Johann Ambrosius Barth, Heidelberg, Leipzig, 1995. Zbl0830.46028MR1328645
- 46. G. Alberti, S. Baldo, and G. Orlandi, Variational convergence for functionals of Ginzburg–Landau type, to appear. Zbl1160.35013MR2177107
- 47. F. Bethuel, G. Orlandi, and D. Smets, On an open problem for Jacobians raised by Bourgain, Brezis and Mironescu, C. R. Acad Sci., Paris, Sér. I, 337 (2003), 381–385. Zbl1113.35315MR2015080
- 48. F. Bethuel, G. Orlandi, and D. Smets, Approximation with vorticity bounds for the Ginzburg–Landau functional, to appear in Comm. Contemp. Math. Zbl1129.35329MR2100765
- 49. J. Bourgain and H. Brezis, New estimates for the Laplacian, the div-curl, and related Hodge systems, C. R. Acad Sci., Paris, Sér. I, 338 (2004), 539–543. Zbl1101.35013MR2057026
- 50. H. Federer and W. H. Fleming, Normal and integral currents, Ann. Math., 72 (1960), 458–520. Zbl0187.31301MR123260
- 51. A. Ponce, An estimate in the spirit of Poincaré’s inequality, J. Eur. Math. Soc., 6 (2004), 1–15. Zbl1051.46019
- 52. J. Van Schaftingen, On an inequality of Bourgain, Brezis and Mironescu, C. R. Acad Sci., Paris, Sér. I, 338 (2004), 23–26. Zbl1188.26015MR2038078
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.