An axiomatic treatment of pairs of elliptic differential equations

Peter Loeb

Annales de l'institut Fourier (1966)

  • Volume: 16, Issue: 2, page 167-208
  • ISSN: 0373-0956

How to cite

top

Loeb, Peter. "An axiomatic treatment of pairs of elliptic differential equations." Annales de l'institut Fourier 16.2 (1966): 167-208. <http://eudml.org/doc/73901>.

@article{Loeb1966,
author = {Loeb, Peter},
journal = {Annales de l'institut Fourier},
keywords = {partial differential equations},
language = {eng},
number = {2},
pages = {167-208},
publisher = {Association des Annales de l'Institut Fourier},
title = {An axiomatic treatment of pairs of elliptic differential equations},
url = {http://eudml.org/doc/73901},
volume = {16},
year = {1966},
}

TY - JOUR
AU - Loeb, Peter
TI - An axiomatic treatment of pairs of elliptic differential equations
JO - Annales de l'institut Fourier
PY - 1966
PB - Association des Annales de l'Institut Fourier
VL - 16
IS - 2
SP - 167
EP - 208
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/73901
ER -

References

top
  1. [1] H. BAUER, Axiomatische Behandlung des Dirichletschen Problems für Elliptische und Parabolische Differentialgleichungen, Math. Annalen, 146 (1962), 1-59. Zbl0107.08003MR26 #1612
  2. [2] N. BOBOC, C. CONSTANTINESCU and A. CORNEA, On the Dirichlet Problem in the Axiomatic Theory of Harmonic Functions, Nagoya Math. Journ., 23 (1963), 73-96. Zbl0139.06603MR29 #261
  3. [3] N. BOURBAKI, Intégration, Actualités Sci. Ind., 1175 (1952), Paris. Zbl0049.31703
  4. [4] M. BRELOT, Une Axiomatique Générale du Problème de Dirichlet dans les Espaces Localement Compacts, Séminaire de Théorie du Potentiel (dirigé par M. Brelot et G. Choquet), 1957, 6-01-6-16. 
  5. [5] M. BRELOT, Axiomatique des Fonctions Harmoniques et Surharmoniques dans un Espace Localement Compact, Séminaire de Théorie du Potentiel (dirigé par M. Brelot, G. Choquet et J. Deny), 1958, 1-01-1-40. 
  6. [6] M. BRELOT, Lectures on Potentiel Theory, Tata Institute of Fundamental Research, Bombay, (1960). Zbl0098.06903
  7. [7] C. CONSTANTINESCU and A. CORNEA, On the Axiomatic of Harmonic Functions I, Ann. Inst. Fourier, 13,2 (1963), 373-388. Zbl0122.34001MR29 #2416
  8. [8] R. COURANT and D. HILBERT, Methods of Mathematical Physics, Inter-science Publishers, New York, 1962. Zbl0099.29504
  9. [9] K. GOWRISANKARAN, Extreme Harmonic Functions and Boundary Value Problems, Ann. Inst. Fourier, 13,2 (1963), 307-356. Zbl0134.09503MR29 #1350
  10. [10] R.-M. HERVÉ, Recherches Axiomatiques sur la Théorie des Fonctions Surharmoniques et du Potentiel, Ann. Inst. Fourier, Grenoble, 12 (1962), 415-571. Zbl0101.08103MR25 #3186
  11. [11] K. HOFFMAN, Banach Spaces of Analytic Functions, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. Zbl0117.34001MR24 #A2844
  12. [12] O. PERRON, Eine Neue Behandlung der Ersten Randwertaufgabe für ∆u = 0, Math. Z., 18 (1923), 42-54. JFM49.0340.01
  13. [13] H. L. ROYDEN, The Equation ∆u = Pu, and the Classification of Open Riemann Surfaces, Mathematica, Helsinki, 271 (1959). Zbl0096.05803MR22 #12215
  14. [14] H. L. ROYDEN, Real Analysis, Macmillan, New York, 1963. Zbl0121.05501MR27 #1540

Citations in EuDML Documents

top
  1. Sadoon Ibrahim Othman, Victor Anandam, Biharmonic Green domains in a Riemannian manifold
  2. Peter Loeb, Bertram Walsh, A maximal regular boundary for solutions of elliptic differential equations
  3. Eva Čermáková, The insertion of regular sets in potential theory
  4. John C. Taylor, On the Martin compactification of a bounded Lipschitz domain in a riemannian manifold
  5. Victor Anandam, Espaces harmoniques sans potentiel positif
  6. John C. Taylor, The Martin boundaries of equivalent sheaves
  7. Bertram Walsh, Flux in axiomatic potential theory. II. Duality
  8. Linda Lumer-Naïm, p -spaces of harmonic functions

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.