An axiomatic treatment of pairs of elliptic differential equations
Annales de l'institut Fourier (1966)
- Volume: 16, Issue: 2, page 167-208
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLoeb, Peter. "An axiomatic treatment of pairs of elliptic differential equations." Annales de l'institut Fourier 16.2 (1966): 167-208. <http://eudml.org/doc/73901>.
@article{Loeb1966,
author = {Loeb, Peter},
journal = {Annales de l'institut Fourier},
keywords = {partial differential equations},
language = {eng},
number = {2},
pages = {167-208},
publisher = {Association des Annales de l'Institut Fourier},
title = {An axiomatic treatment of pairs of elliptic differential equations},
url = {http://eudml.org/doc/73901},
volume = {16},
year = {1966},
}
TY - JOUR
AU - Loeb, Peter
TI - An axiomatic treatment of pairs of elliptic differential equations
JO - Annales de l'institut Fourier
PY - 1966
PB - Association des Annales de l'Institut Fourier
VL - 16
IS - 2
SP - 167
EP - 208
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/73901
ER -
References
top- [1] H. BAUER, Axiomatische Behandlung des Dirichletschen Problems für Elliptische und Parabolische Differentialgleichungen, Math. Annalen, 146 (1962), 1-59. Zbl0107.08003MR26 #1612
- [2] N. BOBOC, C. CONSTANTINESCU and A. CORNEA, On the Dirichlet Problem in the Axiomatic Theory of Harmonic Functions, Nagoya Math. Journ., 23 (1963), 73-96. Zbl0139.06603MR29 #261
- [3] N. BOURBAKI, Intégration, Actualités Sci. Ind., 1175 (1952), Paris. Zbl0049.31703
- [4] M. BRELOT, Une Axiomatique Générale du Problème de Dirichlet dans les Espaces Localement Compacts, Séminaire de Théorie du Potentiel (dirigé par M. Brelot et G. Choquet), 1957, 6-01-6-16.
- [5] M. BRELOT, Axiomatique des Fonctions Harmoniques et Surharmoniques dans un Espace Localement Compact, Séminaire de Théorie du Potentiel (dirigé par M. Brelot, G. Choquet et J. Deny), 1958, 1-01-1-40.
- [6] M. BRELOT, Lectures on Potentiel Theory, Tata Institute of Fundamental Research, Bombay, (1960). Zbl0098.06903
- [7] C. CONSTANTINESCU and A. CORNEA, On the Axiomatic of Harmonic Functions I, Ann. Inst. Fourier, 13,2 (1963), 373-388. Zbl0122.34001MR29 #2416
- [8] R. COURANT and D. HILBERT, Methods of Mathematical Physics, Inter-science Publishers, New York, 1962. Zbl0099.29504
- [9] K. GOWRISANKARAN, Extreme Harmonic Functions and Boundary Value Problems, Ann. Inst. Fourier, 13,2 (1963), 307-356. Zbl0134.09503MR29 #1350
- [10] R.-M. HERVÉ, Recherches Axiomatiques sur la Théorie des Fonctions Surharmoniques et du Potentiel, Ann. Inst. Fourier, Grenoble, 12 (1962), 415-571. Zbl0101.08103MR25 #3186
- [11] K. HOFFMAN, Banach Spaces of Analytic Functions, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. Zbl0117.34001MR24 #A2844
- [12] O. PERRON, Eine Neue Behandlung der Ersten Randwertaufgabe für ∆u = 0, Math. Z., 18 (1923), 42-54. JFM49.0340.01
- [13] H. L. ROYDEN, The Equation ∆u = Pu, and the Classification of Open Riemann Surfaces, Mathematica, Helsinki, 271 (1959). Zbl0096.05803MR22 #12215
- [14] H. L. ROYDEN, Real Analysis, Macmillan, New York, 1963. Zbl0121.05501MR27 #1540
Citations in EuDML Documents
top- Sadoon Ibrahim Othman, Victor Anandam, Biharmonic Green domains in a Riemannian manifold
- Peter Loeb, Bertram Walsh, A maximal regular boundary for solutions of elliptic differential equations
- Eva Čermáková, The insertion of regular sets in potential theory
- John C. Taylor, On the Martin compactification of a bounded Lipschitz domain in a riemannian manifold
- Victor Anandam, Espaces harmoniques sans potentiel positif
- John C. Taylor, The Martin boundaries of equivalent sheaves
- Bertram Walsh, Flux in axiomatic potential theory. II. Duality
- Linda Lumer-Naïm, -spaces of harmonic functions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.