Déformations de flots d'Anosov et de groupes fuchsiens
Annales de l'institut Fourier (1992)
- Volume: 42, Issue: 1-2, page 209-247
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGhys, Étienne. "Déformations de flots d'Anosov et de groupes fuchsiens." Annales de l'institut Fourier 42.1-2 (1992): 209-247. <http://eudml.org/doc/74952>.
@article{Ghys1992,
abstract = {Nous étudions les flots d’Anosov sur les variétés compactes de dimension 3 pour lesquels les distributions stable et instable faibles sont de classe $C^ \infty $. Nous classons tous ces flots lorsqu’ils préservent le volume puis nous construisons une famille d’exemples qui ne préservent pas le volume. Nous classons aussi ces flots sous une hypothèse de “pincement”. En application, nous décrivons les déformations des groupes fuchsiens dans le groupe des difféomorphismes du cercle.},
author = {Ghys, Étienne},
journal = {Annales de l'institut Fourier},
keywords = {dynamical systems; Anosov flows; Fuchsian groups},
language = {fre},
number = {1-2},
pages = {209-247},
publisher = {Association des Annales de l'Institut Fourier},
title = {Déformations de flots d'Anosov et de groupes fuchsiens},
url = {http://eudml.org/doc/74952},
volume = {42},
year = {1992},
}
TY - JOUR
AU - Ghys, Étienne
TI - Déformations de flots d'Anosov et de groupes fuchsiens
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 1-2
SP - 209
EP - 247
AB - Nous étudions les flots d’Anosov sur les variétés compactes de dimension 3 pour lesquels les distributions stable et instable faibles sont de classe $C^ \infty $. Nous classons tous ces flots lorsqu’ils préservent le volume puis nous construisons une famille d’exemples qui ne préservent pas le volume. Nous classons aussi ces flots sous une hypothèse de “pincement”. En application, nous décrivons les déformations des groupes fuchsiens dans le groupe des difféomorphismes du cercle.
LA - fre
KW - dynamical systems; Anosov flows; Fuchsian groups
UR - http://eudml.org/doc/74952
ER -
References
top- [An] D.V. ANOSOV, Geodesic flow on compact manifolds of negative curvature, Proc. Steklov Math. Inst. A.M.S. Translations, 1969.
- [Ar] P. ARMANDARIZ, Codimension one Anosov flows on manifolds with solvable fundamental group, Thèse Univ. Ispapalapa, Mexico.
- [Av] A. AVEZ, Anosov diffeomorphisms, in Proc. Int. Symp. on Topological dynamics, Benjamin, 1968, 17-51. Zbl0203.26101MR38 #4646
- [BeFoL] Y. BENOIST, P. FOULON, F. LABOURIE, Flots d'Anosov à distributions stable et instable différentiables, prépublication, 1990. Zbl0754.58027MR92b:58165
- [Bo] R. BOWEN, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Maths. Springer n° 470, 1975. Zbl0308.28010MR56 #1364
- [FeKat] R. FERES, A. KATOK, Invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows, Erg. Th. & Dyn. Sys. 9, (1989), 427-432. Zbl0667.58050MR90k:58167
- [Fe] R. FERES, Geodesic flows on manifolds of negative curvature with smooth horospheric foliations, preprint, 1990. Zbl0729.58039
- [Fri] D. FRIED, Transitive Anosov flows and Pseudo-Anosov maps, Topology, 22, n° 3 (1983), 299-303. Zbl0516.58035MR84j:58095
- [FraWi] J. FRANKS, R. WILLIAMS, Anomalous Anosov flows, Lecture Notes in Maths., Springer n° 819, 158-174. Zbl0463.58021
- [GhSe] E. GHYS, V. SERGIESCU, Stabilité et conjugaison différentiable pour certains feuilletages, Topology, 19 (1980), 179-197. Zbl0478.57017MR81k:57022
- [GhTs] E. GHYS, T. TSUBOI, Différentiabilité des conjugaisons entre systèmes dynamiques de dimension 1, Ann. Inst. Fourier, 38 (1) (1988), 215-244. Zbl0633.58018MR89i:58119
- [Gh1] E. GHYS, Flots d'Anosov sur les 3-variétés fibrées en cercles, Ergod. Th. & Dynam. Sys., 4 (1984), 67-80. Zbl0527.58030MR86b:58098
- [Gh2] E. GHYS, Actions localement libres du groupe affine, Invent. Math., 82 (1985), 479-526. Zbl0577.57010MR87f:58084
- [Gh3] E. GHYS, Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Scien. Ec. Norm. Sup., 20 (1987), 251-270. Zbl0663.58025MR89h:58153
- [Go] S. GOODMAN, Dehn surgery on Anosov flows, Geometric dynamics, Lecture Notes in Maths., Springer n° 1007, 300-307. Zbl0532.58021MR1691596
- [Gr] M. GROMOV, Three remarks on geodesic dynamics and fundamental group, texte non publié, S.U.N.Y., vers 1977. Zbl1002.53028
- [HuKat] S. HURDER, A. KATOK, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Pub. I.H.E.S., 72 (1990), 5-61. Zbl0725.58034
- [HanTh] M. HANDEL, W. THURSTON, Anosov flows on new 3-manifolds, Inv. Math., vol. 59 (1980), 95-103. Zbl0435.58019MR81i:58032
- [Hae] A. HAEFLIGER, Groupoïdes d'holonomie et classifiants, Astérique, 116 (1984), 70-97. Zbl0562.57012MR86c:57026a
- [Has] B. HASSELBLATT, Bootstrapping regularity of the Anosov splitting, to appear in Proc. A.M.S. Zbl0790.58029
- [Kan] M. KANAI, Geodesic flows of negatively curved manifolds with smooth stable and unstable foliations, Ergodic Theory & Dynam. Sys., 8 (1988), 215-240. Zbl0634.58020MR89k:58230
- [O] J.-P. OTAL, Le spectre marqué des surfaces à courbure négative, Annals of Maths., 131 (1990), 151-162. Zbl0699.58018MR91c:58026
- [PaPo] W. PARRY, M. POLLICOTT, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, n° 187-188, S.M.F., 1990. Zbl0726.58003MR92f:58141
- [PlTh] J. PLANTE, W. THURSTON, Anosov flows and the fundamental group, Topology, 11 (1972), 147-150. Zbl0246.58014MR45 #4455
- [Pa] W. PARRY, Synchronisation of canonical measures for hyperbolic attractors, Commun. Math. Phys., 106 (1986), 267-275. Zbl0618.58026MR88b:58088
- [Pl] J. PLANTE, Anosov flows, transversely affine foliations and a conjecture of Verjovsky, J. London Math. Soc., (2) 23 (1981), 359-362. Zbl0465.58020
- [RVa] F. RAYMOND, T. VASQUEZ, 3-manifolds whose universal coverings are Lie groups, Topology and its App., vol. 12 (1981), 161-179. Zbl0468.57009MR82i:57011
- [Sa] R. SACKSTEDER, Foliations and pseudogroups, Ann. of Math., 87 (1965), 79-102. Zbl0136.20903MR30 #4268
- [St] S. STERNBERG, Local Cn-transformations of the real line, Duke Math. J., 24, 94-102. Zbl0077.06201MR21 #1371
- [Su] D. SULLIVAN, Discrete conformal groups and measurable dynamics, Bull. Amer. Math. Soc., 6 (1982), 53-73. Zbl0489.58027MR83c:58066
- [Th1] W. THURSTON, Foliations on 3-manifolds which are circle bundles, Ph. D. Thesis, Berkeley, 1972.
- [Th2] W. THURSTON, The geometry and topology of 3-manifolds, Princeton Lecture Notes, 1976.
- [To] P. TOMTER, Anosov flows on infrahomogeneous spaces, Proc. Symp. Pure Maths., 14 (1970), 299-328. Zbl0207.54502MR43 #5552
- [Ve] A. VERJOVSKY, Codimension one Anosov flows, Bol. Soc. Matem. Mex., 19 (1974). Zbl0323.58014MR55 #4282
- [Wo] J. WOLF, Spaces of constant curvature, Publish or Perish. Zbl0162.53304
Citations in EuDML Documents
top- Thierry Barbot, Plane affine geometry and Anosov flows
- Étienne Ghys, Rigidité différentiable des groupes fuchsiens
- Takeo Noda, Projectively Anosov flows with differentiable (un)stable foliations
- Laurent Guieu, Nombre de rotation, structures géométriques sur un cercle et groupe de Bott-Virasoro
- Takeo Noda, Regular projectively Anosov flows with compact leaves
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.