Travelling waves for the Gross-Pitaevskii equation I
Fabrice Bethuel; Jean-Claude Saut
Annales de l'I.H.P. Physique théorique (1999)
- Volume: 70, Issue: 2, page 147-238
- ISSN: 0246-0211
Access Full Article
topHow to cite
topBethuel, Fabrice, and Saut, Jean-Claude. "Travelling waves for the Gross-Pitaevskii equation I." Annales de l'I.H.P. Physique théorique 70.2 (1999): 147-238. <http://eudml.org/doc/76813>.
@article{Bethuel1999,
author = {Bethuel, Fabrice, Saut, Jean-Claude},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {nonlinear Schrödinger equation; travelling waves; vortices; Ginzburg-Landau functional; dark solutions},
language = {eng},
number = {2},
pages = {147-238},
publisher = {Gauthier-Villars},
title = {Travelling waves for the Gross-Pitaevskii equation I},
url = {http://eudml.org/doc/76813},
volume = {70},
year = {1999},
}
TY - JOUR
AU - Bethuel, Fabrice
AU - Saut, Jean-Claude
TI - Travelling waves for the Gross-Pitaevskii equation I
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 70
IS - 2
SP - 147
EP - 238
LA - eng
KW - nonlinear Schrödinger equation; travelling waves; vortices; Ginzburg-Landau functional; dark solutions
UR - http://eudml.org/doc/76813
ER -
References
top- [AB] L. Almeida and F. Bethuel, Topological methods for the Ginzburg-Landau equation, J. Math. Pures Appl., 77, 1998, pp. 1-49. Zbl0904.35023MR1617594
- [BBH] F. Bethuel, H. Brézis and F. Hélein, Ginzburg-Landau vortices, Birkhaüser1994. Zbl0802.35142MR1269538
- [BCL] H. Brézis, J.-M. Coron and E. Lieb, Harmonic maps with defects, Comm. Math. Phys., 107, 1986, pp. 649-705. Zbl0608.58016MR868739
- [BMR] H. Brézis, F. Merle and T. Rivière, Quantization effects for -Δv = v(1 - |v|2) in R2, Arch. Rational Mech. Anal., 126, 1994, pp. 35-58. Zbl0809.35019MR1268048
- [BR] F. Bethuel and T. Rivière, Vortices for a minimization problem related to superconductivity, Annales IHP, Analyse Non Linéaire, 12, 1995, pp. 243-303. Zbl0842.35119MR1340265
- [BS] F. Bethuel and J.-C. Saut, Travelling waves for the Gross-Pitaevskii equation II, in preparation. Zbl1190.35196
- [CJ] J.E. Colliander and R.L. Jerrard, Vortex dynamics for the Ginzburg-Landau-Schrödinger equation, Preprint, 1997. Zbl0914.35128MR1623410
- [CLMS] R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl., 72, 1993, pp. 247-286. Zbl0864.42009MR1225511
- [E] I. Ekeland, Convexity methods in Hamiltonian Mechanics, Springer-Verlag, 1990. Zbl0707.70003MR1051888
- [GR] J. Grant and P.H. Roberts, Motions in a Bose condensate III, The structure and effective masses of charged and uncharged impurities, J. Phys. A. : Math. Nucl. Gen., 7, 2, 1974, pp. 260-279.
- [GhP] N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Annales IHP, Analyse non Linéaire, 6, 1989, pp. 321-330. Zbl0711.58008MR1030853
- [H] F. Helein, Applications harmoniques, lois de conservation et repères mobiles, Diderot éd., Paris, 1996.
- [JPR] C.A. Jones S. J. Putterman and P.H. Roberts,Motions in a Bose condensate : V. Stability of Solitary wave solutions of nonlinear Schrödinger equations in two and three dimensions, , J. Phys. A. Math. Gen., 15, 1982, pp. 2599-2619.
- [JR] C.A. Jones and P.H. Roberts, Motions in a Bose condensate IV. Axisymmetric solitary wavesJ. Phys. A. Math. Gen., 15, 1982, pp. 2599-2619.
- [K1] T. Kato, On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Physique Théorique, 46, 1, 1987, pp. 113-129. Zbl0632.35038MR877998
- [K2] T. Kato, Nonlinear Schrödinger equations, Lecture Notes in Physics, vol. 345, Springer Verlag, Berlin, 1989, pp. 218-263. Zbl0698.35131MR1037322
- [KR1] E.A. Kuznetsov and J.J. Rasmussen, Instability of two-dimensional solitons and vortices in defocusing media, Phys. Rev. E, 51, 5, 1995, pp. 4479-4484.
- [KR2] E.A. Kuznetsov and J.J. Rasmussen, Self-focusing Instability of two-dimensional solitons and vortices, JETP, Lett., Vol. 62, 2, 1995, pp. 105-112.
- [L1] F.H. Lin, Solutions of Ginzburg equations and critical points of the renormalized energy, Annales IHP, Analyse Non Linéaire, 12, 1995, pp. 599-622 Zbl0845.35052MR1353261
- [L1] F.H. Lin, Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math.. Zbl0853.35058MR1376654
- [PN] K.M. Pismen and A.A. Nepomnyashchy, Stability of vortex maps in a model of superflow, Physica, D69, 1993, pp. 163-175. Zbl0791.35128
- [PR] L.M. Pismen and J. Rubinstein, Motion of vortex lines in the Ginzburg-Landau model, PhysicaD47, 1991, pp. 353-360. Zbl0728.35090MR1098255
- [Str] M. Struwe, On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions, J. Diff. Int. Eq., 7, 1994, pp. 1617-1624 ; Erratum J. Diff. Int. Eq., 8, 1995, p. 224. Zbl0809.35031MR1269674
Citations in EuDML Documents
top- Philippe Gravejat, Decay for travelling waves in the Gross–Pitaevskii equation
- V. Banica, L. Vega, On the Dirac delta as initial condition for nonlinear Schrödinger equations
- Fabrice Béthuel, Philippe Gravejat, Jean-Claude Saut, Ondes progressives pour l’équation de Gross-Pitaevskii
- Thomas Alazard, Rémi Carles, WKB analysis for the Gross-Pitaevskii equation with non-trivial boundary conditions at infinity
- Robert L. Jerrard, Vortex filament dynamics for Gross-Pitaevsky type equations
- Fabrice Bethuel, Jean-Claude Saut, Travelling waves for the Gross-Pitaevskii equation I
- P. Gérard, The Cauchy problem for the Gross–Pitaevskii equation
- Mihai Mariş, Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity: some results and open problems
- Fabrice Bethuel, Giandomenico Orlandi, Didier Smets, Motion of concentration sets in Ginzburg-Landau equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.