Travelling waves for the Gross-Pitaevskii equation I

Fabrice Bethuel; Jean-Claude Saut

Annales de l'I.H.P. Physique théorique (1999)

  • Volume: 70, Issue: 2, page 147-238
  • ISSN: 0246-0211

How to cite

top

Bethuel, Fabrice, and Saut, Jean-Claude. "Travelling waves for the Gross-Pitaevskii equation I." Annales de l'I.H.P. Physique théorique 70.2 (1999): 147-238. <http://eudml.org/doc/76813>.

@article{Bethuel1999,
author = {Bethuel, Fabrice, Saut, Jean-Claude},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {nonlinear Schrödinger equation; travelling waves; vortices; Ginzburg-Landau functional; dark solutions},
language = {eng},
number = {2},
pages = {147-238},
publisher = {Gauthier-Villars},
title = {Travelling waves for the Gross-Pitaevskii equation I},
url = {http://eudml.org/doc/76813},
volume = {70},
year = {1999},
}

TY - JOUR
AU - Bethuel, Fabrice
AU - Saut, Jean-Claude
TI - Travelling waves for the Gross-Pitaevskii equation I
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 70
IS - 2
SP - 147
EP - 238
LA - eng
KW - nonlinear Schrödinger equation; travelling waves; vortices; Ginzburg-Landau functional; dark solutions
UR - http://eudml.org/doc/76813
ER -

References

top
  1. [AB] L. Almeida and F. Bethuel, Topological methods for the Ginzburg-Landau equation, J. Math. Pures Appl., 77, 1998, pp. 1-49. Zbl0904.35023MR1617594
  2. [BBH] F. Bethuel, H. Brézis and F. Hélein, Ginzburg-Landau vortices, Birkhaüser1994. Zbl0802.35142MR1269538
  3. [BCL] H. Brézis, J.-M. Coron and E. Lieb, Harmonic maps with defects, Comm. Math. Phys., 107, 1986, pp. 649-705. Zbl0608.58016MR868739
  4. [BMR] H. Brézis, F. Merle and T. Rivière, Quantization effects for -Δv = v(1 - |v|2) in R2, Arch. Rational Mech. Anal., 126, 1994, pp. 35-58. Zbl0809.35019MR1268048
  5. [BR] F. Bethuel and T. Rivière, Vortices for a minimization problem related to superconductivity, Annales IHP, Analyse Non Linéaire, 12, 1995, pp. 243-303. Zbl0842.35119MR1340265
  6. [BS] F. Bethuel and J.-C. Saut, Travelling waves for the Gross-Pitaevskii equation II, in preparation. Zbl1190.35196
  7. [CJ] J.E. Colliander and R.L. Jerrard, Vortex dynamics for the Ginzburg-Landau-Schrödinger equation, Preprint, 1997. Zbl0914.35128MR1623410
  8. [CLMS] R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl., 72, 1993, pp. 247-286. Zbl0864.42009MR1225511
  9. [E] I. Ekeland, Convexity methods in Hamiltonian Mechanics, Springer-Verlag, 1990. Zbl0707.70003MR1051888
  10. [GR] J. Grant and P.H. Roberts, Motions in a Bose condensate III, The structure and effective masses of charged and uncharged impurities, J. Phys. A. : Math. Nucl. Gen., 7, 2, 1974, pp. 260-279. 
  11. [GhP] N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Annales IHP, Analyse non Linéaire, 6, 1989, pp. 321-330. Zbl0711.58008MR1030853
  12. [H] F. Helein, Applications harmoniques, lois de conservation et repères mobiles, Diderot éd., Paris, 1996. 
  13. [JPR] C.A. Jones S. J. Putterman and P.H. Roberts,Motions in a Bose condensate : V. Stability of Solitary wave solutions of nonlinear Schrödinger equations in two and three dimensions, , J. Phys. A. Math. Gen., 15, 1982, pp. 2599-2619. 
  14. [JR] C.A. Jones and P.H. Roberts, Motions in a Bose condensate IV. Axisymmetric solitary wavesJ. Phys. A. Math. Gen., 15, 1982, pp. 2599-2619. 
  15. [K1] T. Kato, On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Physique Théorique, 46, 1, 1987, pp. 113-129. Zbl0632.35038MR877998
  16. [K2] T. Kato, Nonlinear Schrödinger equations, Lecture Notes in Physics, vol. 345, Springer Verlag, Berlin, 1989, pp. 218-263. Zbl0698.35131MR1037322
  17. [KR1] E.A. Kuznetsov and J.J. Rasmussen, Instability of two-dimensional solitons and vortices in defocusing media, Phys. Rev. E, 51, 5, 1995, pp. 4479-4484. 
  18. [KR2] E.A. Kuznetsov and J.J. Rasmussen, Self-focusing Instability of two-dimensional solitons and vortices, JETP, Lett., Vol. 62, 2, 1995, pp. 105-112. 
  19. [L1] F.H. Lin, Solutions of Ginzburg equations and critical points of the renormalized energy, Annales IHP, Analyse Non Linéaire, 12, 1995, pp. 599-622 Zbl0845.35052MR1353261
  20. [L1] F.H. Lin, Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math.. Zbl0853.35058MR1376654
  21. [PN] K.M. Pismen and A.A. Nepomnyashchy, Stability of vortex maps in a model of superflow, Physica, D69, 1993, pp. 163-175. Zbl0791.35128
  22. [PR] L.M. Pismen and J. Rubinstein, Motion of vortex lines in the Ginzburg-Landau model, PhysicaD47, 1991, pp. 353-360. Zbl0728.35090MR1098255
  23. [Str] M. Struwe, On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions, J. Diff. Int. Eq., 7, 1994, pp. 1617-1624 ; Erratum J. Diff. Int. Eq., 8, 1995, p. 224. Zbl0809.35031MR1269674

Citations in EuDML Documents

top
  1. Philippe Gravejat, Decay for travelling waves in the Gross–Pitaevskii equation
  2. V. Banica, L. Vega, On the Dirac delta as initial condition for nonlinear Schrödinger equations
  3. Fabrice Béthuel, Philippe Gravejat, Jean-Claude Saut, Ondes progressives pour l’équation de Gross-Pitaevskii
  4. Thomas Alazard, Rémi Carles, WKB analysis for the Gross-Pitaevskii equation with non-trivial boundary conditions at infinity
  5. Robert L. Jerrard, Vortex filament dynamics for Gross-Pitaevsky type equations
  6. Fabrice Bethuel, Jean-Claude Saut, Travelling waves for the Gross-Pitaevskii equation I
  7. P. Gérard, The Cauchy problem for the Gross–Pitaevskii equation
  8. Mihai Mariş, Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity: some results and open problems
  9. Fabrice Bethuel, Giandomenico Orlandi, Didier Smets, Motion of concentration sets in Ginzburg-Landau equations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.