Induced representations of reductive 𝔭 -adic groups. II. On irreducible representations of GL ( n )

A. V. Zelevinsky

Annales scientifiques de l'École Normale Supérieure (1980)

  • Volume: 13, Issue: 2, page 165-210
  • ISSN: 0012-9593

How to cite

top

Zelevinsky, A. V.. "Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of ${\rm GL}(n)$." Annales scientifiques de l'École Normale Supérieure 13.2 (1980): 165-210. <http://eudml.org/doc/82048>.

@article{Zelevinsky1980,
author = {Zelevinsky, A. V.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {p-adic field; general linear group; bialgebra structure; cuspidal irreducible representation; Whittaker models},
language = {eng},
number = {2},
pages = {165-210},
publisher = {Elsevier},
title = {Induced representations of reductive $\{\mathfrak \{p\}\}$-adic groups. II. On irreducible representations of $\{\rm GL\}(n)$},
url = {http://eudml.org/doc/82048},
volume = {13},
year = {1980},
}

TY - JOUR
AU - Zelevinsky, A. V.
TI - Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of ${\rm GL}(n)$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1980
PB - Elsevier
VL - 13
IS - 2
SP - 165
EP - 210
LA - eng
KW - p-adic field; general linear group; bialgebra structure; cuspidal irreducible representation; Whittaker models
UR - http://eudml.org/doc/82048
ER -

References

top
  1. [1] I. N. BERNSTEIN and A. V. ZELEVINSKY, Induced Representations of Reductive p-Adic Groups I (Ann. scient. Éc. Norm. Sup., 4e serie, t. 10, 1977, pp. 441-472). Zbl0412.22015MR58 #28310
  2. [2] I. N. BERNSTEIN and A. V. ZELEVINSKY, Representations of the Group GL (n, F), where F is a Local Non-Archimedean Field (Uspekhi Mat. Nauk, Vol. 31, No. 3, 1976, pp. 5-70). Zbl0348.43007MR54 #12988
  3. [3] I. N. BERNSTEIN and A. V. ZELEVINSKY, Induced Representations of the Group GL (n) Over a p-Adic Field (Funkc. Anal. i Priložen., Vol. 10, No. 3, 1976, pp. 74-75). MR54 #12989
  4. [4] I. N. BERNSTEIN, I. M. GELFAND and S. I. GELFAND, The Structure of Representations Generated by Vectors of Highest Weight (Funkc. Anal. i Prilozen, Vol. 5, No. 1, 1971, pp. 1-9). Zbl0246.17008MR45 #298
  5. [5] N. BOURBAKI, Algèbre, Chap. 1 à 3, Hermann, Paris, 1970. Zbl0211.02401
  6. [6] W. CASSELMAN, Introduction to the Theory of Admissible Representations of p-Adic Reductive Groups, preprint. 
  7. [7] P. DELIGNE, Formes modulaires et représentations de GL (2), in Modular Functions of One Variable II (Lecture Notes in Math., 349, Springer-Verlag, 1973). Zbl0271.10032MR50 #240
  8. [8] I. M. GELFAND and D. A. KAZHDAN, Representations of GL (n, K), in Lie Groups and Their Representations, Akadèmiai Kiado, Budapest, 1974. 
  9. [9] R. GODEMENT and H. JACQUET, Zeta-Functions of Simple Algebras (Lecture Notes in Math., 260, Springer-Verlag, 1972). Zbl0244.12011MR49 #7241
  10. [10] M. HALL, Combinatorial Theory, Blaisdell Publ. Comp., 1967. Zbl0196.02401MR37 #80
  11. [11] A. W. KNAPP and G. ZUCKERMAN, Classification of Irreducible Tempered Representations of Semisimple Lie Groups (Proc. Nat. Acad. Sc. U.S.A., Vol. 73, No. 7, 1976, pp. 2178-2180. Zbl0329.22013MR57 #538
  12. [12] R. LANGLANDS, On the Classification of Irreducible Representations of Real Algebraic Groups, mimeographed notes, Inst. for Adv. Study, 1973. 
  13. [13] G. I. OLSHANSKY, Intertwining Operators and Complementary Series in the Class of Representations of the General Group of Matrices Over a Locally Compact Division Algebra, Induced from Parabolic Subgroups (Mat. Sb., Vol. 93, No. 2, 1974, pp. 218-253). 
  14. [14] A. V. ZELEVINSKY, Classification of Irreducible Non-Cuspidal Representations of the Group GLn Over a p-Adic Field (Funkc. Anal. i Priložen, Vol. 11, No. 1, 1977, pp. 67-68). Zbl0363.22012
  15. [15] A. V. ZELEVINSKY, The Representation Ring of Groups GL(n) Over a p-Adic Field (Funkc. Anal. i Priložen, Vol. 11, No. 3, 1977, pp. 78-79). 

Citations in EuDML Documents

top
  1. Chris Jantzen, Reducibility of certain representations for symplectic and odd-orthogonal groups
  2. Christophe Breuil, [unknown]
  3. J.-L. Waldspurger, Un exercice sur G S p ( 4 , F ) et les représentations de Weil
  4. François Courtès, Sur le transfert des intégrales orbitales pour les groupes linéaires (cas p -adique)
  5. Laurent Clozel, Sur une conjecture de Howe. I
  6. Colin J. Bushnell, Guy Henniart, Local tame lifting for G L ( N ) . I: Simple characters
  7. Guy Henniart, Induction automorphe globale pour les corps de nombres
  8. Guy Henniart, Une caractérisation de la correspondance de Langlands locale pour GL ( n )
  9. Alexandru Ioan Badulescu, Correspondance de Jacquet–Langlands pour les corps locaux de caractéristique non nulle
  10. Marie-France Vignéras, La conjecture de Langlands locale pour GL(n,F) modulo ℓ quand ℓ≠p,ℓ&gt;n

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.