Linear elliptic operators with measurable coefficients

Neil S. Trudinger

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1973)

  • Volume: 27, Issue: 2, page 265-308
  • ISSN: 0391-173X

How to cite

top

Trudinger, Neil S.. "Linear elliptic operators with measurable coefficients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.2 (1973): 265-308. <http://eudml.org/doc/83635>.

@article{Trudinger1973,
author = {Trudinger, Neil S.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {265-308},
publisher = {Scuola normale superiore},
title = {Linear elliptic operators with measurable coefficients},
url = {http://eudml.org/doc/83635},
volume = {27},
year = {1973},
}

TY - JOUR
AU - Trudinger, Neil S.
TI - Linear elliptic operators with measurable coefficients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1973
PB - Scuola normale superiore
VL - 27
IS - 2
SP - 265
EP - 308
LA - eng
UR - http://eudml.org/doc/83635
ER -

References

top
  1. [1] Campanato, S., « Proprietà di inclusione per spazi di Morrey », Ricerche Mat., Vol. 12 (1963), 67-86. Zbl0192.22703MR156228
  2. [2] Chicco, M., « Principio di massimo forte per sottosoluzione di equazioni ellittiche di tipo variazionale », Boll. U.M.I., Ser. 3, Vol. 22 (1967), 368-372. Zbl0149.32002MR224999
  3. [3] Chicco, M., « Semicontinuità delle sottosoluzioni di equazioni ellittiche di tipo variazionale », Boll. U.M.I, Ser. 4, Vol. 1 (1968), 548553. Zbl0159.39903MR235263
  4. [4] Chicco, M., « Principio di massimo per soluzioni di problemi al contorno misti per equazioni ellittiche di tipo variazionale », Boll. U M.I., Ser 4, Vol. 3 (1970), 384-394. Zbl0193.39102MR264218
  5. [5] De Giorgi, E., « Sulla differenziabilità. e l'analiticità delle estremali degli integrali multipli regolari », Mem. Accad. Sci. Torino, Ser 3a, Vol. 3 (1957), 25-43. Zbl0084.31901MR93649
  6. [6] Donaldson, T.K. and Trudinger N.S., « Orlicz-Sobolev spaces and imbedding theorems », J. Functional Analysis, Vol. 8 (1971), 52-75. Zbl0216.15702MR301500
  7. [7] Hervé, R.M. and M., « Les fonctions surharmoniques associées à un opérateur. elliptique du second ordre a coefficients discontinus », Ann. Inst. Fourier, Vol.19 (1969), 305-359. Zbl0176.09801MR261027
  8. [8] John F. and Nirenberg L., « On functions of bounded mean oscillation », Comm. Pure Appl. Math. Vol. 14 (1961), 415-426. Zbl0102.04302MR131498
  9. [9] Kruzkov, S.N., « Certain properties of solutions of elliptic equations », (English translation), Soviet Math. Vol. 4 (1963), 686-695. Zbl0148.35701
  10. [10] Ladyzhenskaya O.A. and Ural'tseva N.N., « On the Hölder continuity of the solutions and their derivatives of linear and quasi linear equations of elliptic and parabolic type » . (In Russian). Trudy Mat. Inst. Steklov, Vol. 73 (1964), 173-190. MR173855
  11. [11] Ladvzhenskaya O.A. and Ural'tseva N.N., « Linear and quasilinear equations of elliptic type », Izd. Nauka, Moscow, 1964. English translation, Academic press, New York, 1968. Zbl0164.13002
  12. [12] Littman, W., « Generalized subharmonic functions » : Monotonic approximations and an improved maximum principle », Ann. Sc. Norm. Sup. Pisa, Vol. 17 (1963), 207-222. Zbl0123.29104MR177186
  13. [13] Littman, W., Stampacchia, G., and Weinberger, H.F., « Regular points for elliptic equations with discontinuous coefficients », Ann. Sc. Norm. Sup. Pisa, Vol. 17 (1963), 43-77. Zbl0116.30302MR161019
  14. [14] Meyers, G.N. and Serrin J.B., « H = W », Proc. Nat. Acad. Sci., Vol. 51 (1964), 1055-1056. Zbl0123.30501MR164252
  15. [15] Morrey, C.B. Jr., «Second order elliptic equations in several variables and Hölder continuity », Math. Zeit., Vol. 72 (1959), 146-164. Zbl0094.07802MR120446
  16. [16] Morrey, C.B. Jr., «Mutiple integrals in the calculus of variations », Springer Verlag, New York, 1966. Zbl0142.38701MR202511
  17. [17] Moser, J.K., «A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations », Comm. Pure Appl. Math., Vol. 13 (1960), 457-468. Zbl0111.09301MR170091
  18. [18] Moser, J.K., « On Harnack's theorem for elliptic differential equations », Comm. Pure Appl. Math., Vol. 14 (1961), 577-591. Zbl0111.09302MR159138
  19. [19] Moser, J.K., « On pointwise estimates for parabolic differential equations », Comm. Pure Appl. Math., Vol. 24 (1971), 727-740. Zbl0227.35016MR288405
  20. [20] Murthy, M.K.V., and Stampacchia, G., « Boundary value problems for some degenerate-elliptio operators », Ann. Mat. Pura Appl., Vol. 80 (1968), 1-122. Zbl0185.19201MR249828
  21. [21] Nash, J., « Continuity of solutions of elliptic and parabolic equations », Amer. J. Math., Vol. 80 (1958), 931-954. Zbl0096.06902MR100158
  22. [22] Serrin, J.B., « Local behavior of solutions of quasilinear elliptic equations », Acta Math. Vol. III (1964), 247-302. Zbl0128.09101MR170096
  23. [23] Skaff, M.S., « Vector valued Orlicz spaces II », Pacific J. Math., Vol. 28 (1969), 413-430. Zbl0176.11003MR415306
  24. [24] Stampacchia, G., « Contributi alla regolarizzazione delle soluzioni dei problemi al contorno per equazioni del secondo ordine ellittiche », Ann. Sc. Norm. Sup. Pisa, Vol.12 (1958), 223-245. Zbl0082.09701MR125313
  25. [25] Stampacchia G., « Problemi al contorno ellittici con data discontinui dotati di soluzioni hölderiane », Ann. Mat. Pura Appl. Vol. 51 (1960), 1-38. Zbl0204.42001MR126601
  26. [26] Stampacchia G., « Some limit cases of Lp-estimates for solutions of second order elliptic equations », Comm. Pure Appl. Math. Vol. 16 (1963), 505-510. Zbl0147.09202MR152735
  27. [27] Stampacchia G., « Le problème de Dirichlet pour les équations elliptique, du second ordre à coefficients discontinus », Ann. Inst. Fourier, Vol. 15 (1965), 189-258. Zbl0151.15401MR192177
  28. [28] Trudinger N.S., « Second order linear and quasilinear elliptic equations in n-variables », Lecture notes, Stanford University1971. 
  29. [29] Trudinger N.S., « On Harnack type inequalities and their application to quasilinear elliptic equations », Comm. Pure Appl. Math., Vol. 20 (1967), 721-747. Zbl0153.42703MR226198
  30. [30] Trudinger N.S., « On imbeddings into Orlicz spaces and some applications », J. Math. Mech., Vol. 17 (1967), 473-484. Zbl0163.36402MR216286
  31. [31] Trudinger N.S., « On the regularity of generalized solutions of linear non-uniformly elliptic equations », Arch. Rat. Mech. Anal. Vol. 42 (1971), 51-62. Zbl0218.35035MR344656
  32. [32] Trudinger N.S., « Generalized solutions of quasilinear, differential inequalities », « I Elliptic operators », Bull. Amer. Math. Soc., Vol. 77 (1971), 571-579. Zbl0235.35013MR277887
  33. [33] Trudinger N.S., « Local and global behaviour of generalized solutions of quasilinear, differential inequalities », (to appear). 
  34. [34] Yosida, K., « Functional analysis », Springer-Verlag, New York, 1965. Zbl0126.11504

Citations in EuDML Documents

top
  1. Bruno Franchi, Ermanno Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients
  2. Bruno Franchi, Ermanno Lanconelli, De Giorgi’s Theorem, for a Class of Strongly Degenerate Elliptic Equations
  3. Bruno Franchi, Ermanno Lanconelli, De Giorgi’s Theorem, for a Class of Strongly Degenerate Elliptic Equations
  4. Vladimir I. Bogachev, Nicolai V. Krylov, Michael Röckner, Elliptic regularity and essential self-adjointness of Dirichlet operators on n
  5. Guido Trombetti, Juan Luis Vazquez, A symmetrization result for elliptic equations with lower-order terms
  6. S. Chanillo, R. L. Wheeden, Existence and estimates of Green's function for degenerate elliptic equations
  7. Salvatore Bonafede, Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms
  8. Maria Alessandra Ragusa, Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis
  9. Giuseppe Mingione, Regularity of minima: an invitation to the Dark Side of the Calculus of Variations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.