Linear elliptic operators with measurable coefficients
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1973)
- Volume: 27, Issue: 2, page 265-308
- ISSN: 0391-173X
Access Full Article
topHow to cite
topTrudinger, Neil S.. "Linear elliptic operators with measurable coefficients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.2 (1973): 265-308. <http://eudml.org/doc/83635>.
@article{Trudinger1973,
author = {Trudinger, Neil S.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {265-308},
publisher = {Scuola normale superiore},
title = {Linear elliptic operators with measurable coefficients},
url = {http://eudml.org/doc/83635},
volume = {27},
year = {1973},
}
TY - JOUR
AU - Trudinger, Neil S.
TI - Linear elliptic operators with measurable coefficients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1973
PB - Scuola normale superiore
VL - 27
IS - 2
SP - 265
EP - 308
LA - eng
UR - http://eudml.org/doc/83635
ER -
References
top- [1] Campanato, S., « Proprietà di inclusione per spazi di Morrey », Ricerche Mat., Vol. 12 (1963), 67-86. Zbl0192.22703MR156228
- [2] Chicco, M., « Principio di massimo forte per sottosoluzione di equazioni ellittiche di tipo variazionale », Boll. U.M.I., Ser. 3, Vol. 22 (1967), 368-372. Zbl0149.32002MR224999
- [3] Chicco, M., « Semicontinuità delle sottosoluzioni di equazioni ellittiche di tipo variazionale », Boll. U.M.I, Ser. 4, Vol. 1 (1968), 548553. Zbl0159.39903MR235263
- [4] Chicco, M., « Principio di massimo per soluzioni di problemi al contorno misti per equazioni ellittiche di tipo variazionale », Boll. U M.I., Ser 4, Vol. 3 (1970), 384-394. Zbl0193.39102MR264218
- [5] De Giorgi, E., « Sulla differenziabilità. e l'analiticità delle estremali degli integrali multipli regolari », Mem. Accad. Sci. Torino, Ser 3a, Vol. 3 (1957), 25-43. Zbl0084.31901MR93649
- [6] Donaldson, T.K. and Trudinger N.S., « Orlicz-Sobolev spaces and imbedding theorems », J. Functional Analysis, Vol. 8 (1971), 52-75. Zbl0216.15702MR301500
- [7] Hervé, R.M. and M., « Les fonctions surharmoniques associées à un opérateur. elliptique du second ordre a coefficients discontinus », Ann. Inst. Fourier, Vol.19 (1969), 305-359. Zbl0176.09801MR261027
- [8] John F. and Nirenberg L., « On functions of bounded mean oscillation », Comm. Pure Appl. Math. Vol. 14 (1961), 415-426. Zbl0102.04302MR131498
- [9] Kruzkov, S.N., « Certain properties of solutions of elliptic equations », (English translation), Soviet Math. Vol. 4 (1963), 686-695. Zbl0148.35701
- [10] Ladyzhenskaya O.A. and Ural'tseva N.N., « On the Hölder continuity of the solutions and their derivatives of linear and quasi linear equations of elliptic and parabolic type » . (In Russian). Trudy Mat. Inst. Steklov, Vol. 73 (1964), 173-190. MR173855
- [11] Ladvzhenskaya O.A. and Ural'tseva N.N., « Linear and quasilinear equations of elliptic type », Izd. Nauka, Moscow, 1964. English translation, Academic press, New York, 1968. Zbl0164.13002
- [12] Littman, W., « Generalized subharmonic functions » : Monotonic approximations and an improved maximum principle », Ann. Sc. Norm. Sup. Pisa, Vol. 17 (1963), 207-222. Zbl0123.29104MR177186
- [13] Littman, W., Stampacchia, G., and Weinberger, H.F., « Regular points for elliptic equations with discontinuous coefficients », Ann. Sc. Norm. Sup. Pisa, Vol. 17 (1963), 43-77. Zbl0116.30302MR161019
- [14] Meyers, G.N. and Serrin J.B., « H = W », Proc. Nat. Acad. Sci., Vol. 51 (1964), 1055-1056. Zbl0123.30501MR164252
- [15] Morrey, C.B. Jr., «Second order elliptic equations in several variables and Hölder continuity », Math. Zeit., Vol. 72 (1959), 146-164. Zbl0094.07802MR120446
- [16] Morrey, C.B. Jr., «Mutiple integrals in the calculus of variations », Springer Verlag, New York, 1966. Zbl0142.38701MR202511
- [17] Moser, J.K., «A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations », Comm. Pure Appl. Math., Vol. 13 (1960), 457-468. Zbl0111.09301MR170091
- [18] Moser, J.K., « On Harnack's theorem for elliptic differential equations », Comm. Pure Appl. Math., Vol. 14 (1961), 577-591. Zbl0111.09302MR159138
- [19] Moser, J.K., « On pointwise estimates for parabolic differential equations », Comm. Pure Appl. Math., Vol. 24 (1971), 727-740. Zbl0227.35016MR288405
- [20] Murthy, M.K.V., and Stampacchia, G., « Boundary value problems for some degenerate-elliptio operators », Ann. Mat. Pura Appl., Vol. 80 (1968), 1-122. Zbl0185.19201MR249828
- [21] Nash, J., « Continuity of solutions of elliptic and parabolic equations », Amer. J. Math., Vol. 80 (1958), 931-954. Zbl0096.06902MR100158
- [22] Serrin, J.B., « Local behavior of solutions of quasilinear elliptic equations », Acta Math. Vol. III (1964), 247-302. Zbl0128.09101MR170096
- [23] Skaff, M.S., « Vector valued Orlicz spaces II », Pacific J. Math., Vol. 28 (1969), 413-430. Zbl0176.11003MR415306
- [24] Stampacchia, G., « Contributi alla regolarizzazione delle soluzioni dei problemi al contorno per equazioni del secondo ordine ellittiche », Ann. Sc. Norm. Sup. Pisa, Vol.12 (1958), 223-245. Zbl0082.09701MR125313
- [25] Stampacchia G., « Problemi al contorno ellittici con data discontinui dotati di soluzioni hölderiane », Ann. Mat. Pura Appl. Vol. 51 (1960), 1-38. Zbl0204.42001MR126601
- [26] Stampacchia G., « Some limit cases of Lp-estimates for solutions of second order elliptic equations », Comm. Pure Appl. Math. Vol. 16 (1963), 505-510. Zbl0147.09202MR152735
- [27] Stampacchia G., « Le problème de Dirichlet pour les équations elliptique, du second ordre à coefficients discontinus », Ann. Inst. Fourier, Vol. 15 (1965), 189-258. Zbl0151.15401MR192177
- [28] Trudinger N.S., « Second order linear and quasilinear elliptic equations in n-variables », Lecture notes, Stanford University1971.
- [29] Trudinger N.S., « On Harnack type inequalities and their application to quasilinear elliptic equations », Comm. Pure Appl. Math., Vol. 20 (1967), 721-747. Zbl0153.42703MR226198
- [30] Trudinger N.S., « On imbeddings into Orlicz spaces and some applications », J. Math. Mech., Vol. 17 (1967), 473-484. Zbl0163.36402MR216286
- [31] Trudinger N.S., « On the regularity of generalized solutions of linear non-uniformly elliptic equations », Arch. Rat. Mech. Anal. Vol. 42 (1971), 51-62. Zbl0218.35035MR344656
- [32] Trudinger N.S., « Generalized solutions of quasilinear, differential inequalities », « I Elliptic operators », Bull. Amer. Math. Soc., Vol. 77 (1971), 571-579. Zbl0235.35013MR277887
- [33] Trudinger N.S., « Local and global behaviour of generalized solutions of quasilinear, differential inequalities », (to appear).
- [34] Yosida, K., « Functional analysis », Springer-Verlag, New York, 1965. Zbl0126.11504
Citations in EuDML Documents
top- Bruno Franchi, Ermanno Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients
- Bruno Franchi, Ermanno Lanconelli, De Giorgi’s Theorem, for a Class of Strongly Degenerate Elliptic Equations
- Bruno Franchi, Ermanno Lanconelli, De Giorgi’s Theorem, for a Class of Strongly Degenerate Elliptic Equations
- Vladimir I. Bogachev, Nicolai V. Krylov, Michael Röckner, Elliptic regularity and essential self-adjointness of Dirichlet operators on
- Guido Trombetti, Juan Luis Vazquez, A symmetrization result for elliptic equations with lower-order terms
- S. Chanillo, R. L. Wheeden, Existence and estimates of Green's function for degenerate elliptic equations
- Salvatore Bonafede, Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms
- Maria Alessandra Ragusa, Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis
- Giuseppe Mingione, Regularity of minima: an invitation to the Dark Side of the Calculus of Variations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.