Polynomial bound on the distribution of poles in scattering by an obstacle
Journées équations aux dérivées partielles (1984)
- page 1-8
- ISSN: 0752-0360
Access Full Article
topHow to cite
topMelrose, Richard B.. "Polynomial bound on the distribution of poles in scattering by an obstacle." Journées équations aux dérivées partielles (1984): 1-8. <http://eudml.org/doc/93108>.
@article{Melrose1984,
author = {Melrose, Richard B.},
journal = {Journées équations aux dérivées partielles},
keywords = {smooth compact obstacle; Lax-Phillips scattering theory; scattering matrix; Dirichlet, Neumann or Robin boundary condition; meromorphic; scattering by a potential},
language = {eng},
pages = {1-8},
publisher = {Ecole polytechnique},
title = {Polynomial bound on the distribution of poles in scattering by an obstacle},
url = {http://eudml.org/doc/93108},
year = {1984},
}
TY - JOUR
AU - Melrose, Richard B.
TI - Polynomial bound on the distribution of poles in scattering by an obstacle
JO - Journées équations aux dérivées partielles
PY - 1984
PB - Ecole polytechnique
SP - 1
EP - 8
LA - eng
KW - smooth compact obstacle; Lax-Phillips scattering theory; scattering matrix; Dirichlet, Neumann or Robin boundary condition; meromorphic; scattering by a potential
UR - http://eudml.org/doc/93108
ER -
References
top- [1] P.D. Lax & R.S. Phillips. Scattering theory, Academic Press. Zbl0117.09104
- [2] R.B. Melrose. Polynomial bound for the poles in scattering by a potential. J. Funct. Anal (1984). Zbl0621.35073
Citations in EuDML Documents
top- Johannes Sjöstrand, Maciej Zworski, Estimates on the number of scattering poles near the real axis for strictly convex obstacles
- G. Vodev, Polynomial bounds on the number of scattering poles for symmetric systems
- Mitsuru Ikawa, On the poles of the scattering matrix for two convex obstacles
- J. Sjöstrand, Estimations sur les résonances pour le laplacien avec une perturbation à support compact
- Mitsuru Ikawa, On poles of scattering matrices for several convex bodies
- Georgi Vodev, On the distribution of scattering poles for perturbations of the Laplacian
- G. Vodev, Sharp bounds on the number of resonances for symmetric systems
- Maciej Zworski, Fractal Weyl laws for quantum resonances
- G. Vodev, P. Stefanov, Distribution des résonances pour le système de l'élasticité
- Vesselin Petkov, Maciej Zworski, Variation de la phase de diffusion et distribution des résonances
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.