Blowup of small data solutions for a quasilinear wave equation in two space dimensions.
L’étude de l’équation des ondes et de ses perturbations a montré l’importance d’un certain nombre d’objets géométriques, tels que les cônes sortants et rentrants, les champs de Lorentz, des repères isotropes adaptés, etc. Parmi les systèmes d’équations hyperboliques non linéaires, les équations d’Einstein jouent un rôle central ; leur étude a nécessité, dans le cas d’un espace-temps courbe, la construction d’objets analogues à ceux du cas plat, cônes, repères adaptés, etc. La construction de ces...
We investigate for which metric (close to the standard metric ) the solutions of the corresponding d’Alembertian behave like free solutions of the standard wave equation. We give rather weak (, non integrable) decay conditions on ; in particular, decays like along wave cones.
The aim of this mini-course is twofold: describe quickly the framework of quasilinear wave equation with small data; and give a detailed sketch of the proofs of the blowup theorems in this framework. The first chapter introduces the main tools and concepts, and presents the main results as solutions of natural conjectures. The second chapter gives a self-contained account of geometric blowup and of its applications to present problem.
L’auteur prouve deux théorèmes d’unicité locale du problème de Cauchy pour des opérateurs linéaires de symboles principaux réels. Il se place dans le cas où possède des points critiques réels (), au voisinage desquels il suppose une condition faible de “pseudo-convexité” (au sens d’Hörmander). Il donne alors des conditions sur le symbole sous-principal de l’opérateur qui assurent l’unicité.
Page 1 Next