CONTENTS Preface................ III CHAPTER I. THEORY OF VECTORS I. Operations on vectors § 1. Preliminary definitions.................. 1 § 2. Components of a vector.................. 2 § 3. Sum and difference of vectors.................. 3 § 4. Product of a vector by a number.................. 4 § 5. Components of a sum and product.................. 5 § 6. Resolution of a vector.................. 6 § 7. Scalar product.................. 7 § 8. Vector product.................. 9 § 9. Product of...
ROZDZIAŁ VI. STATYKA CIAŁA SZTYWNEGO I. Ciało swobodne § 1. Ciało sztywne................. 235 § 2. Siła.......................... 236 § 3. Hipotezy równowagi sił........ 239 § 4. Przekształcanie układów sił.... 239 § 5. Warunki równowagi sił.......... 245 § 6. Grafostatyka. Wielobok sznurowy... 238 § 7. Niektóre zastosowania wieloboku sznurowego.... 256 II. Ciało nieswobodne § 8. Warunki równowagi.................... 261 § 9. Reakcje ciał stykających się......... 262 § 10. Tarcie.................................
SPIS RZECZY CZĘŚĆ PIERWSZA PRZEDMOWA............. III ERRATA................ VI ROZDZIAŁ I. TEORIA WEKTORÓW I. Działania na wektorach § 1. Określenia wstępne........................ 1 § 2. Współrzędne wektora........................ 2 § 3. Suma i różnica wektorów........................ 3 § 4. Iloczyn wektora przez liczbę........................ 4 § 5. Współrzędne sumy i iloczynu........................ 5 § 6. Rozkład wektora........................ 6 § 7. Iloczyn skalarowy...........................
SPIS RZECZY PRZEDMOWA...................... III WSTĘP. Liczby rzeczywiste...... 1 1. Aksjomaty i definicje. 2. Zbiory liniowe. 3. Liczby nieskończone. ROZDZIAŁ I. Teoria zbiorów § 1. Algebra zbiorów....... 4 1. Działania na zbiorach. 2. Działania nieskończone. 3. Znakowanie logiczne. 4. Produkt zbiorów. Funkcje zdaniowe wielu zmiennych. 5. Interpretacja geometryczna kwantora. § 2. Odwzorowania zbiorów, pojęcie ciągu, produkt nieskończony zbiorów...... 14 1. Odwzorowanie (funkcja). 2. Ciąg. 3. Produkt...
PRÉFACE............................................................................................... III ERRATA................................................................................................ VIII INTRODUCTION. A. L’intégrale de Lebesgue-Stieltjes § 1. Quelques théorèmes de la théorie de l’intégrale de Lebesgue...................................... 1 § 2. Quelques inégalités pour les fonctions à p-ième puissance sommable............................... 2 § 3. La convergence asymptotique.........................................................................
Le but de cette note est d'établir quelques relations qui subsistent entre certaines classes de fonctions continues.
Le but de cette note est d'établir quelques théorèmes valables pour différents champs fonctionnels.
Le but de cette note est de démontrer le théorème Théorème: Si la fonction φ transforme d'une façon biunivoque l'ensemble A en un sous-ensemble de B et de même la fonction ψ transforme un sous-ensemble de A en l'ensemble B, il existe une décomposition des ensembles A et B: A = A_1+A_2, B=B_1+B_2 qui satisfait aux conditions: A_1 × A_2=0=B_1 × B_2, φ(A_1)=B_1 et ψ(A_2) = B_2 et d'en tirer quelques conséquences.
Théorème: Soit E un ensemble plan quelconque mais borné et contenu dans un ensemble ouvert et borné Ω. Supposons qu'à tout point P de E correspond une suite infinie {W_i(P)} (i=1,2,...) des ensembles fermés W_i(P) contenus dans Ω et remplissant les hypothèses suivantes: 1. W_i(P) est situe dans un cercle K_i(P) dont P est le centre, 2. lim_(i → ∞) |K_i(P)| = 0 (La notation |X| signifie la mesure lebesguienne de X, si X est mesurable (L)) 3. il existe un nombre positif α tel que l'inégalité |W_i(P)|/|K_i(P)|...
Le but de cette note est de démontrer que les fonctions derivées de Dini d'une fonction f(x) mesurable (L) sont mesurable (L).
Dan ce mémoire l'auteur s'occupe des fonctions d'ensembles définies pour les ensembles formant un corps K_0. Le corps K_0 est le produit de toutes les classes K de sous-ensembes du carre aux sommets (0,0), (0,1), (1,0), (1,1) (carre fondamental) satisfaisant aux conditions suivantes: 1. Tout carre ferme, contenu dans le carre fondamental, appartient à K; 2. Si E_1 et E_2 appartient à K, et si E_1E_2=0, alors E_1+E_2 appartient à K; 3. Si E_1 et E_2 appartient à K et E_2 ⊂ E_1, alors E_1-E_2 appartient...
Le but de cette note est de démontrer: Théorème: Si C est un arc simple dans le plan, la condition nécessaire et suffisante pour que C soit rectifiable est que les fonctions N_x(s,C) et N_y(s,C) soient intégrale, ou N_x(s,C) désigne le nombre de points en lesquels la droite x=s coupe l'arc C. Théorème: La condition nécessaire et suffisante pour que la fonction continue y=f(x) à variation bornée soit absolument continue est que tout ensemble de mesure nulle situe sur l'axe d'abscisses soit transformé...
Dans ce travail l'auteur s'occupe du problème de la mesure et des trois problèmes connexes suivants: Problème: Dans son livre "Leçons sur l'intégration" (Paris 1905) Monsieur Lebesgue énonce les propriétés de son intégrale: 1. Quels que soient a, b, h, on a ∫_{a}^{b}f(x)dx = ∫_{a+h}^{b+h}f(x-h)dx 2. Quels que soient a, b, c, on a ∫_{a}^{b}f(x)dx + ∫_{b}^{c}f(x)dx +∫_{c}^{a}f(x)dx = 0 3. ∫_{a}^{b}[f(x)+φ(x)]dx = ∫_{a}^{b}f(x)dx +∫_{a}^{b}φ(x)dx 4. Si l'on a f ≤ 0 et b>a, on a aussi ∫_{a}^{b}f(x)dx...
Le but de cette note est de démontrer que toute fonction mesurable f(x) satisfaisant à l'équation fonctionnelle f(x+y)=f(x)+f(y) est continue (donc, d'après Cauchy, de la forme Ax).
Download Results (CSV)