Set theory with free construction principles
Several order-theoretic properties of the real axis, of the monads and of the infinites in nonstandard models of Analysis are considered. Pseudometrizability and topological completeness of related uniformities are studied.
Several order-theoretic properties of the real axis, of the monads and of the infinites in nonstandard models of Analysis are considered. Pseudometrizability and topological completeness of related uniformities are studied.
We propose a "natural" axiomatic theory of the Foundations of Mathematics (Theory Q) where, in addition to the membership relation (between elements and classes), pairs, sets, natural numbers, n-tuples and operations are also introduced as primitives by means of suitable ground classes. Moreover, the theory Q allows an easy introduction of other mathematical and logical entities. The theory Q is finitely axiomatized in § 2, using a first-order language with a binary relation (membership) and five...
We propose a "natural" axiomatic theory of the Foundations of Mathematics (Theory Q) where, in addition to the membership relation (between elements and classes), pairs, sets, natural numbers, n-tuples and operations are also introduced as primitives by means of suitable ground classes. Moreover, the theory Q allows an easy introduction of other mathematical and logical entities. The theory Q is finitely axiomatized in § 2, using a first-order language with a binary relation (membership) and five...
I primi elementi della sintassi e della semantica del Calcolo dei Predicati del primo ordine (predicati, proposizioni, formule, interpretazioni, ecc.) sono introdotti nell'ambiente delle teorie base dei Fondamenti della Matematica di [11]. Il problema della verità e falsità delle proposizioni è affontato introducendo, a fianco delle ordinarie qualità , , che non possono valutare tutte le proposizioni (Teorema 1), nuovi «oggetti metateorici», le metaqualità , che, indipendenti dalle relazioni...
We formulate, within the frame-theory for the foundations of Mathematics outlined in [2], a list of axioms which state that almost all "interesting" collections and almost all "interesting" operations are elements of the universe. The resulting theory would thus have the important foundational feature of being completely self-contained. Unfortunately, the whole list is inconsistent, and we are led to formulate the following problem, which we call the problem of self-reference: "Find out...
Vengono proposte alcune teorie base dei Fondamenti della Matematica che assumono come concetti primitivi i concetti di numero naturale, collezione, qualità, operazione e relazione; le operazioni e le relazioni considerate possono essere più o meno complesse: il numero naturale che indica il grado di complessità è detto arietà. Nelle teorie considerate è raggiunto un alto grado di autoreferenza.
We formulate, within the frame-theory for the foundations of Mathematics outlined in [2], a list of axioms which state that almost all "interesting" collections and almost all "interesting" operations are elements of the universe. The resulting theory would thus have the important foundational feature of being completely self-contained. Unfortunately, the whole list is inconsistent, and we are led to formulate the following problem, which we call the problem of self-reference: "Find out...
Introduciamo la nozione di variabile nel quadro assiomatico delle teorie base dei Fondamenti della Matematica [9]. In tale quadro le variabili sono inserite come oggetti «unari», assumono valori di varie specie, possono essere connesse da correlazioni (o corrispondenze) e ammettono rappresentazioni funzionali locali. Gli assiomi sulle variabili sono scelti tenendo presenti gli usi più frequenti del termine «variabile» in Analisi Matematica, Fisica Matematica, Algebra, Geometria, Logica e in molte...
Page 1