Currently displaying 1 – 20 of 23

Showing per page

Order by Relevance | Title | Year of publication

Two-parameter Hardy-Littlewood inequalities

Ferenc Weisz — 1996

Studia Mathematica

The inequality (*) ( | n | = 1 | m | = 1 | n m | p - 2 | f ̂ ( n , m ) | p ) 1 / p C p ƒ H p (0 < p ≤ 2) is proved for two-parameter trigonometric-Fourier coefficients and for the two-dimensional classical Hardy space H p on the bidisc. The inequality (*) is extended to each p if the Fourier coefficients are monotone. For monotone coefficients and for every p, the supremum of the partial sums of the Fourier series is in L p whenever the left hand side of (*) is finite. From this it follows that under the same condition the two-dimensional trigonometric-Fourier series...

Cesàro summability of one- and two-dimensional trigonometric-Fourier series

Ferenc Weisz — 1997

Colloquium Mathematicae

We introduce p-quasilocal operators and prove that if a sublinear operator T is p-quasilocal and bounded from L to L then it is also bounded from the classical Hardy space H p ( T ) to L p (0 < p ≤ 1). As an application it is shown that the maximal operator of the one-parameter Cesàro means of a distribution is bounded from H p ( T ) to L p (3/4 < p ≤ ∞) and is of weak type ( L 1 , L 1 ) . We define the two-dimensional dyadic hybrid Hardy space H 1 ( T 2 ) and verify that the maximal operator of the Cesàro means of a two-dimensional...

Fejér means of two-dimensional Fourier transforms on H p ( × )

Ferenc Weisz — 1999

Colloquium Mathematicae

The two-dimensional classical Hardy spaces H p ( × ) are introduced and it is shown that the maximal operator of the Fejér means of a tempered distribution is bounded from H p ( × ) to L p ( 2 ) (1/2 < p ≤ ∞) and is of weak type ( H 1 ( × ) , L 1 ( 2 ) ) where the Hardy space H 1 ( × ) is defined by the hybrid maximal function. As a consequence we deduce that the Fejér means of a function f ∈ H 1 ( × ) L l o g L ( 2 ) converge to f a.e. Moreover, we prove that the Fejér means are uniformly bounded on H p ( × ) whenever 1/2 < p < ∞. Thus, in case f ∈ H p ( × ) , the Fejér means...

( H p , L p ) -type inequalities for the two-dimensional dyadic derivative

Ferenc Weisz — 1996

Studia Mathematica

It is shown that the restricted maximal operator of the two-dimensional dyadic derivative of the dyadic integral is bounded from the two-dimensional dyadic Hardy-Lorentz space H p , q to L p , q (2/3 < p < ∞, 0 < q ≤ ∞) and is of weak type ( L 1 , L 1 ) . As a consequence we show that the dyadic integral of a ∞ function f L 1 is dyadically differentiable and its derivative is f a.e.

Martingale operators and Hardy spaces generated by them

Ferenc Weisz — 1995

Studia Mathematica

Martingale Hardy spaces and BMO spaces generated by an operator T are investigated. An atomic decomposition of the space H p T is given if the operator T is predictable. We generalize the John-Nirenberg theorem, namely, we prove that the B M O q spaces generated by an operator T are all equivalent. The sharp operator is also considered and it is verified that the L p norm of the sharp operator is equivalent to the H p T norm. The interpolation spaces between the Hardy and BMO spaces are identified by the real method....

Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series

Ferenc Weisz — 1996

Studia Mathematica

The martingale Hardy space H p ( [ 0 , 1 ) 2 ) and the classical Hardy space H p ( 2 ) are introduced. We prove that certain means of the partial sums of the two-parameter Walsh-Fourier and trigonometric-Fourier series are uniformly bounded operators from H p to L p (0 < p ≤ 1). As a consequence we obtain strong convergence theorems for the partial sums. The classical Hardy-Littlewood inequality is extended to two-parameter Walsh-Fourier and trigonometric-Fourier coefficients. The dual inequalities are also verified and a...

Riesz means of Fourier transforms and Fourier series on Hardy spaces

Ferenc Weisz — 1998

Studia Mathematica

Elementary estimates for the Riesz kernel and for its derivative are given. Using these we show that the maximal operator of the Riesz means of a tempered distribution is bounded from H p ( ) to L p ( ) (1/(α+1) < p < ∞) and is of weak type (1,1), where H p ( ) is the classical Hardy space. As a consequence we deduce that the Riesz means of a function L 1 ( ) converge a.e. to ⨍. Moreover, we prove that the Riesz means are uniformly bounded on H p ( ) whenever 1/(α+1) < p < ∞. Thus, in case H p ( ) , the Riesz means converge...

Multi-dimensional Fejér summability and local Hardy spaces

Ferenc Weisz — 2009

Studia Mathematica

It is proved that the multi-dimensional maximal Fejér operator defined in a cone is bounded from the amalgam Hardy space W ( h p , ) to W ( L p , ) . This implies the almost everywhere convergence of the Fejér means in a cone for all f W ( L , ) , which is larger than L ( d ) .

On the Fejér means of bounded Ciesielski systems

Ferenc Weisz — 2001

Studia Mathematica

We investigate the bounded Ciesielski systems, which can be obtained from the spline systems of order (m,k) in the same way as the Walsh system arises from the Haar system. It is shown that the maximal operator of the Fejér means of the Ciesielski-Fourier series is bounded from the Hardy space H p to L p if 1/2 < p < ∞ and m ≥ 0, |k| ≤ m + 1. Moreover, it is of weak type (1,1). As a consequence, the Fejér means of the Ciesielski-Fourier series of a function f converges to f a.e. if f ∈ L₁ as n...

Page 1 Next

Download Results (CSV)