Displaying similar documents to “Teoria liczb”

Działania nieskończone

Wacław Sierpiński

Similarity:

CZĘŚĆ PIERWSZA: Liczby rzeczywiste i zespolone.ROZDZIAŁ I. Przekroje i liczby niewymierne§ 1. Przekroje zbioru liczb wymiernych....................... 1§ 2. Luki. Liczby niewymierne; liczby rzeczywiste....................... 2§ 3. Pojęcie liczby mniejszej i większej....................... 3§ 4. Przechodniość znaku <....................... 4§ 5. Gęstość zbioru liczb wymiernych w zbiorze liczb rzeczywistych....................... 7§ 6. Zamykanie liczby rzeczywistej między dwiema dowolnie...

Zasady algebry wyższej

Wacław Sierpiński

Similarity:

SPIS RZECZY PRZEDMOWA........................................ V ROZDZIAŁ I. PERMUTACJE § 1. Permutacje elementów......................... 1 § 2. Nieporządek elementu i permutacji. Podział permutacji na dwie klasy......... 2 § 3. Transpozycje. Ich wpływ na klasę permutacji. Liczba permutacyj każdej klasy...... 3 § 4. Otrzymywanie dowolnej permutacji za pomocą kolejnych transpozycyj..... 5 ROZDZIAŁ II. WYZNACZNIKI § 1. Wstęp historyczny............................. 7 § 2. Definicja wyznacznika.........................

Rachunek nieskończony

Wacław Sierpiński

Similarity:

CZĘŚĆ TRZECIA: Funkcje elementarne ROZDZIAŁ XVI. Funkcja wykładnicza zmiennej zespolonej. Funkcje trygonometryczne oraz ich odwrócenie § 133. Rozwinięcie funkcji e z na szereg potęgowy................ 1 § 134. Obliczanie liczby e; jej niewymierność................ 3 § 136. Funkcja e z dla zespolonych z................ 6 § 136. Funkcje cos z oraz sin z i ich własności................ 8 § 137. Liczba π. Okresowość funkcyj trygonometrycznych................ 11 § 138. Bieg funkcyj cos x i sin...

Teoria mnogości

Kazimierz Kuratowski, Andrzej Mostowski

Similarity:

PRZEDMOWA ROZDZIAŁ I. ALGEBRA ZBIORÓW § 1. Rachunek zdań...................... 1 § 2. Zbiory i działania na zbiorach..... 4 § 3. Inkluzja. Zbiór pusty.............. 8 § 4. Prawa dodawania, mnożenia i odejmowania........... 10 § 5. Własności różnicy symetrycznej............. 13 § 6. Zbiór 1, uzupełnienie............. 18 § 7. Składowe. Normalna postać twierdzeń......... 20 § 8. Zastosowania algebry zbiorów do topologii... 25 § 9. Algebra Boole’a............................. 31 ROZDZIAŁ...

Funkcje analityczne

Antoni Zygmund, Stanisław Saks

Similarity:

PRZEDMOWA................. III ERRATA.................... VII WSTĘP TEORIA MNOGOŚCI § 1. Definicje podstawowe....... 1 § 2. Zbiory przeliczalne......... 3 § 3. Przestrzeń topologiczna abstrakcyjna..... 4 § 4. Zbiory domknięte i otwarte........ 6 § 5. Zbiory spójne....................... 11 § 6. Zbiory zwarte....................... 13 § 7. Przekształcenia ciągłe................ 15 § 8. Płaszczyzna........................... 17 § 9. Zbiory spójne na płaszczyźnie.......... 26 § 10. Siatki...

Logika matematyczna

Andrzej Mostowski

Similarity:

SPIS RZECZY PRZEDMOWA........................ III ERRATA.................... VII CZĘŚĆ I ROZDZIAŁ I. WIADOMOŚCI WSTĘPNE § 1. Wstęp............................. 1 § 2. Zmienne funkcje zdaniowe................. 3 ROZDZIAŁ II. RACHUNEK ZDAŃ § 1. Negacja..................... 7 § 2. Koniunkcja.................. 8 § 3. Alternatywa................. 9 § 4. Implikacja.................. 10 § 5. Równoważność................ 12 § 6. Uwaga dotycząca symboliki... 13 § 7. Dalsze funktory zdaniotwórcze....

Geometria analityczna w n- wymiarach

Karol Borsuk

Similarity:

Spis rzeczy Przedmowa............................... 1 Wstęp 1. Przedmiot i metoda geometrii analitycznej.............. 4 2. Przestrzeń kartezjańska jednowymiarowa................ 7 3. Przestrzeń kartezjańska dwuwymiarowa........... 8 4. Przestrzeń kartezjańska trójwymiarowa.......... 11 5. Zbiory, funkcje, grupy....................... 14 CZĘŚĆ I. Przestrzenie kartezjańskie Rozdział I. Punkty i wektory w przestrzeniach kartezjańskich.........17 Rozdział II. Zbiory liniowe w przestrzeniach...

Podstawy rachunku prawdopodobieństwa

Stefan Mazurkiewicz

Similarity:

SPIS RZECZY WSTĘP § 1. Teoria mnogości, a w szczególności teoria mocy zbiorów.................. 1 § 2. Przestrzenie kartezjańskie R n ........................................ 8 § 3. Przestrzenie metryczne i przestrzenie ℒ*................................ 17 § 4. Funkcje rzeczywiste w przestrzeniach R n .............................. 19 KSIĘGA PIERWSZA ELEMENTARNA TEORIA PRAWDOPODOBIEŃSTWA ROZDZIAŁ I. Algebra Boole’a § 1. Uwagi wstępne, treść rozdziału.............................. 23 § 2....

Wykłady rachunku różniczkowego i całkowego

Kazimierz Kuratowski

Similarity:

SPIS RZECZY PRZEDMOWA ROZDZIAŁ I Ciągi i szeregi §1. Wstęp §2. Ciągi nieskończone............. 7 §3. Szeregi nieskończone........... 19 ROZDZIAŁ II. Funkcje §4. Funkcje i ich granice.......... 59 §5. Funkcje ciągłe................. 76 §6. Ciągi i szeregi funkcji........ 87 ROZDZIAŁ III. Rachunek różniczkowy jednej zmiennej §7. Pochodne rzędu pierwszego............. 97 §8. Pochodne rzędów wyższych.............. 129 ROZDZIAŁ IV. Rachunek całkowy jednej zmiennej §9. Całki nieoznaczone.................