Displaying similar documents to “Comparison of order statistics in a random sequence to the same statistics with I.I.D. variables”

Asymptotic rate of convergence in the degenerate U-statistics of second order

Olga Yanushkevichiene (2010)

Banach Center Publications

Similarity:

Let X,X₁,...,Xₙ be independent identically distributed random variables taking values in a measurable space (Θ,ℜ ). Let h(x,y) and g(x) be real valued measurable functions of the arguments x,y ∈ Θ and let h(x,y) be symmetric. We consider U-statistics of the type T ( X , . . . , X ) = n - 1 1 i L e t q i ( i 1 ) b e e i g e n v a l u e s o f t h e H i l b e r t - S c h m i d t o p e r a t o r a s s o c i a t e d w i t h t h e k e r n e l h ( x , y ) , a n d q b e t h e l a r g e s t i n a b s o l u t e v a l u e o n e . W e p r o v e t h a t Δn = ρ(T(X₁,...,Xₙ),T(G₁,..., Gₙ)) ≤ (cβ’1/6)/(√(|q₁|) n1/12) , where G i , 1 ≤ i ≤ n, are i.i.d. Gaussian random vectors, ρ is the Kolmogorov (or uniform) distance and β ' : = E | h ( X , X ) | ³ + E | h ( X , X ) | 18 / 5 + E | g ( X ) | ³ + E | g ( X ) | 18 / 5 + 1 < .

Geometrically strictly semistable laws as the limit laws

Marek T. Malinowski (2007)

Discussiones Mathematicae Probability and Statistics

Similarity:

A random variable X is geometrically infinitely divisible iff for every p ∈ (0,1) there exists random variable X p such that X = d k = 1 T ( p ) X p , k , where X p , k ’s are i.i.d. copies of X p , and random variable T(p) independent of X p , 1 , X p , 2 , . . . has geometric distribution with the parameter p. In the paper we give some new characterization of geometrically infinitely divisible distribution. The main results concern geometrically strictly semistable distributions which form a subset of geometrically infinitely divisible distributions....

Some limit theorems for m -pairwise negative quadrant dependent random variables

Yongfeng Wu, Jiangyan Peng (2018)

Kybernetika

Similarity:

The authors first establish the Marcinkiewicz-Zygmund inequalities with exponent p ( 1 p 2 ) for m -pairwise negatively quadrant dependent ( m -PNQD) random variables. By means of the inequalities, the authors obtain some limit theorems for arrays of rowwise m -PNQD random variables, which extend and improve the corresponding results in [Y. Meng and Z. Lin (2009)] and [H. S. Sung (2013)]. It is worthy to point out that the open problem of [H. S. Sung, S. Lisawadi, and A. Volodin (2008)] can be...

Complete convergence theorems for normed row sums from an array of rowwise pairwise negative quadrant dependent random variables with application to the dependent bootstrap

Andrew Rosalsky, Yongfeng Wu (2015)

Applications of Mathematics

Similarity:

Let { X n , j , 1 j m ( n ) , n 1 } be an array of rowwise pairwise negative quadrant dependent mean 0 random variables and let 0 < b n . Conditions are given for j = 1 m ( n ) X n , j / b n 0 completely and for max 1 k m ( n ) | j = 1 k X n , j | / b n 0 completely. As an application of these results, we obtain a complete convergence theorem for the row sums j = 1 m ( n ) X n , j * of the dependent bootstrap samples { { X n , j * , 1 j m ( n ) } , n 1 } arising from a sequence of i.i.d. random variables { X n , n 1 } .

On the Law of Large Numbers for Nonmeasurable Identically Distributed Random Variables

Alexander R. Pruss (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let Ω be a countable infinite product Ω of copies of the same probability space Ω₁, and let Ξₙ be the sequence of the coordinate projection functions from Ω to Ω₁. Let Ψ be a possibly nonmeasurable function from Ω₁ to ℝ, and let Xₙ(ω) = Ψ(Ξₙ(ω)). Then we can think of Xₙ as a sequence of independent but possibly nonmeasurable random variables on Ω. Let Sₙ = X₁ + ⋯ + Xₙ. By the ordinary Strong Law of Large Numbers, we almost surely have E * [ X ] l i m i n f S / n l i m s u p S / n E * [ X ] , where E * and E* are the lower and upper expectations....

The right tail exponent of the Tracy–Widom β distribution

Laure Dumaz, Bálint Virág (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

The Tracy–Widom β distribution is the large dimensional limit of the top eigenvalue of β random matrix ensembles. We use the stochastic Airy operator representation to show that as a the tail of the Tracy–Widom distribution satisfies P ( 𝑇𝑊 β g t ; a ) = a - ( 3 / 4 ) β + o ( 1 ) exp - 2 3 β a 3 / 2 .

A continuous mapping theorem for the argmin-set functional with applications to convex stochastic processes

Dietmar Ferger (2021)

Kybernetika

Similarity:

For lower-semicontinuous and convex stochastic processes Z n and nonnegative random variables ϵ n we investigate the pertaining random sets A ( Z n , ϵ n ) of all ϵ n -approximating minimizers of Z n . It is shown that, if the finite dimensional distributions of the Z n converge to some Z and if the ϵ n converge in probability to some constant c , then the A ( Z n , ϵ n ) converge in distribution to A ( Z , c ) in the hyperspace of Vietoris. As a simple corollary we obtain an extension of several argmin-theorems in the literature. In particular,...

Comparison between two types of large sample covariance matrices

Guangming Pan (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Let { X i j } , i , j = , be a double array of independent and identically distributed (i.i.d.) real random variables with E X 11 = μ , E | X 11 - μ | 2 = 1 and E | X 11 | 4 l t ; . Consider sample covariance matrices (with/without empirical centering) 𝒮 = 1 n j = 1 n ( 𝐬 j - 𝐬 ¯ ) ( 𝐬 j - 𝐬 ¯ ) T and 𝐒 = 1 n j = 1 n 𝐬 j 𝐬 j T , where 𝐬 ¯ = 1 n j = 1 n 𝐬 j and 𝐬 j = 𝐓 n 1 / 2 ( X 1 j , ... , X p j ) T with ( 𝐓 n 1 / 2 ) 2 = 𝐓 n , non-random symmetric non-negative definite matrix. It is proved that central limit theorems of eigenvalue statistics of 𝒮 and 𝐒 are different as n with p / n approaching a positive constant. Moreover, it is also proved that such a different behavior is not observed in the...

Giant component and vacant set for random walk on a discrete torus

Itai Benjamini, Alain-Sol Sznitman (2008)

Journal of the European Mathematical Society

Similarity:

We consider random walk on a discrete torus E of side-length N , in sufficiently high dimension d . We investigate the percolative properties of the vacant set corresponding to the collection of sites which have not been visited by the walk up to time u N d . We show that when u is chosen small, as N tends to infinity, there is with overwhelming probability a unique connected component in the vacant set which contains segments of length const log N . Moreover, this connected component occupies a...

Random ε-nets and embeddings in N

Y. Gordon, A. E. Litvak, A. Pajor, N. Tomczak-Jaegermann (2007)

Studia Mathematica

Similarity:

We show that, given an n-dimensional normed space X, a sequence of N = ( 8 / ε ) 2 n independent random vectors ( X i ) i = 1 N , uniformly distributed in the unit ball of X*, with high probability forms an ε-net for this unit ball. Thus the random linear map Γ : N defined by Γ x = ( x , X i ) i = 1 N embeds X in N with at most 1 + ε norm distortion. In the case X = ℓ₂ⁿ we obtain a random 1+ε-embedding into N with asymptotically best possible relation between N, n, and ε.

Soft local times and decoupling of random interlacements

Serguei Popov, Augusto Teixeira (2015)

Journal of the European Mathematical Society

Similarity:

In this paper we establish a decoupling feature of the random interlacement process u d at level u , d 3 . Roughly speaking, we show that observations of u restricted to two disjoint subsets A 1 and A 2 of d are approximately independent, once we add a sprinkling to the process u by slightly increasing the parameter u . Our results differ from previous ones in that we allow the mutual distance between the sets A 1 and A 2 to be much smaller than their diameters. We then provide an important application...

About the generating function of a left bounded integer-valued random variable

Charles Delorme, Jean-Marc Rinkel (2008)

Bulletin de la Société Mathématique de France

Similarity:

We give a relation between the sign of the mean of an integer-valued, left bounded, random variable X and the number of zeros of 1 - Φ ( z ) inside the unit disk, where Φ is the generating function of X , under some mild conditions

Positivity of integrated random walks

Vladislav Vysotsky (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Take a centered random walk S n and consider the sequence of its partial sums A n : = i = 1 n S i . Suppose S 1 is in the domain of normal attraction of an α -stable law with 1 l t ; α 2 . Assuming that S 1 is either right-exponential (i.e. ( S 1 g t ; x | S 1 g t ; 0 ) = e - a x for some a g t ; 0 and all x g t ; 0 ) or right-continuous (skip free), we prove that { A 1 g t ; 0 , , A N g t ; 0 } C α N 1 / ( 2 α ) - 1 / 2 as N , where C α g t ; 0 depends on the distribution of the walk. We also consider a conditional version of this problem and study positivity of integrated discrete bridges.

Limit theorems for geometric functionals of Gibbs point processes

T. Schreiber, J. E. Yukich (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Observations are made on a point process 𝛯 in d in a window Q λ of volume λ . The observation, or ‘score’ at a point x , here denoted ξ ( x , 𝛯 ) , is a function of the points within a random distance of x . When the input 𝛯 is a Poisson or binomial point process, the large λ limit theory for the total score x 𝛯 Q λ ξ ( x , 𝛯 Q λ ) , when properly scaled and centered, is well understood. In this paper we establish general laws of large numbers, variance asymptotics, and central limit theorems for the total score for Gibbsian...

On reliability analysis of consecutive k -out-of- n systems with arbitrarily dependent components

Ebrahim Salehi (2016)

Applications of Mathematics

Similarity:

In this paper, we consider the linear and circular consecutive k -out-of- n systems consisting of arbitrarily dependent components. Under the condition that at least n - r + 1 components ( r n ) of the system are working at time t , we study the reliability properties of the residual lifetime of such systems. Also, we present some stochastic ordering properties of residual lifetime of consecutive k -out-of- n systems. In the following, we investigate the inactivity time of the component with lifetime...

On uniqueness of distribution of a random variable whose independent copies span a subspace in L p

S. Astashkin, F. Sukochev, D. Zanin (2015)

Studia Mathematica

Similarity:

Let 1 ≤ p < 2 and let L p = L p [ 0 , 1 ] be the classical L p -space of all (classes of) p-integrable functions on [0,1]. It is known that a sequence of independent copies of a mean zero random variable f L p spans in L p a subspace isomorphic to some Orlicz sequence space l M . We give precise connections between M and f and establish conditions under which the distribution of a random variable f L p whose independent copies span l M in L p is essentially unique.