Displaying similar documents to “Extreme symmetric norms on R 2

Symmetric products of the Euclidean spaces and the spheres

Naotsugu Chinen (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

By F n ( X ) , n 1 , we denote the n -th symmetric product of a metric space ( X , d ) as the space of the non-empty finite subsets of X with at most n elements endowed with the Hausdorff metric d H . In this paper we shall describe that every isometry from the n -th symmetric product F n ( X ) into itself is induced by some isometry from X into itself, where X is either the Euclidean space or the sphere with the usual metrics. Moreover, we study the n -th symmetric product of the Euclidean space up to bi-Lipschitz equivalence...

On nearly radial marginals of high-dimensional probability measures

Bo'az Klartag (2010)

Journal of the European Mathematical Society

Similarity:

Suppose that μ is an absolutely continuous probability measure on R n, for large n . Then μ has low-dimensional marginals that are approximately spherically-symmetric. More precisely, if n ( C / ε ) C d , then there exist d -dimensional marginals of μ that are ε -far from being sphericallysymmetric, in an appropriate sense. Here C > 0 is a universal constant.

Complex symmetry of Toeplitz operators on the weighted Bergman spaces

Xiao-He Hu (2022)

Czechoslovak Mathematical Journal

Similarity:

We give a concrete description of complex symmetric monomial Toeplitz operators T z p z ¯ q on the weighted Bergman space A 2 ( Ω ) , where Ω denotes the unit ball or the unit polydisk. We provide a necessary condition for T z p z ¯ q to be complex symmetric. When p , q 2 , we prove that T z p z ¯ q is complex symmetric on A 2 ( Ω ) if and only if p 1 = q 2 and p 2 = q 1 . Moreover, we completely characterize when monomial Toeplitz operators T z p z ¯ q on A 2 ( 𝔻 n ) are J U -symmetric with the n × n symmetric unitary matrix U .

Local equivalence of some maximally symmetric ( 2 , 3 , 5 ) -distributions II

Matthew Randall (2025)

Archivum Mathematicum

Similarity:

We show the change of coordinates that maps the maximally symmetric ( 2 , 3 , 5 ) -distribution given by solutions to the k = 2 3 and k = 3 2 generalised Chazy equation to the flat Cartan distribution. This establishes the local equivalence between the maximally symmetric k = 2 3 and k = 3 2 generalised Chazy distribution and the flat Cartan or Hilbert-Cartan distribution. We give the set of vector fields parametrised by solutions to the k = 2 3 and k = 3 2 generalised Chazy equation and the corresponding Ricci-flat conformal scale...

Taylor towers of symmetric and exterior powers

Brenda Johnson, Randy McCarthy (2008)

Fundamenta Mathematicae

Similarity:

We study the Taylor towers of the nth symmetric and exterior power functors, Spⁿ and Λⁿ. We obtain a description of the layers of the Taylor towers, D k S p and D k Λ , in terms of the first terms in the Taylor towers of S p t and Λ t for t < n. The homology of these first terms is related to the stable derived functors (in the sense of Dold and Puppe) of S p t and Λ t . We use stable derived functor calculations of Dold and Puppe to determine the lowest nontrivial homology groups for D k S p and D k Λ .

A note on average behaviour of the Fourier coefficients of j th symmetric power L -function over certain sparse sequence of positive integers

Youjun Wang (2024)

Czechoslovak Mathematical Journal

Similarity:

Let j 2 be a given integer. Let H k * be the set of all normalized primitive holomorphic cusp forms of even integral weight k 2 for the full modulo group SL ( 2 , ) . For f H k * , denote by λ sym j f ( n ) the n th normalized Fourier coefficient of j th symmetric power L -function ( L ( s , sym j f ) ) attached to f . We are interested in the average behaviour of the sum n = a 1 2 + a 2 2 + a 3 2 + a 4 2 + a 5 2 + a 6 2 x ( a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ) 6 λ sym j f 2 ( n ) , where x is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).

Sharp Ratio Inequalities for a Conditionally Symmetric Martingale

Adam Osękowski (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let f be a conditionally symmetric martingale and let S(f) denote its square function. (i) For p,q > 0, we determine the best constants C p , q such that s u p n ( | f | p ) / ( 1 + S ² ( f ) ) q C p , q . Furthermore, the inequality extends to the case of Hilbert space valued f. (ii) For N = 1,2,... and q > 0, we determine the best constants C N , q ' such that s u p n ( f 2 N - 1 ) ( 1 + S ² ( f ) ) q C N , q ' . These bounds are extended to sums of conditionally symmetric variables which are not necessarily integrable. In addition, we show that neither of the inequalities above holds if...

Some properties for α -starlike functions with respect to k -symmetric points of complex order

H. E. Darwish, A. Y. Lashin, S. M. Sowileh (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In the present work, we introduce the subclass 𝒯 γ , α k ( ϕ ) , of starlike functions with respect to k -symmetric points of complex order γ ( γ 0 ) in the open unit disc . Some interesting subordination criteria, inclusion relations and the integral representation for functions belonging to this class are provided. The results obtained generalize some known results, and some other new results are obtained.

Product property for capacities in N

Mirosław Baran, Leokadia Bialas-Ciez (2012)

Annales Polonici Mathematici

Similarity:

The paper deals with logarithmic capacities, an important tool in pluripotential theory. We show that a class of capacities, which contains the L-capacity, has the following product property: C ν ( E × E ) = m i n ( C ν ( E ) , C ν ( E ) ) , where E j and ν j are respectively a compact set and a norm in N j (j = 1,2), and ν is a norm in N + N , ν = ν₁⊕ₚ ν₂ with some 1 ≤ p ≤ ∞. For a convex subset E of N , denote by C(E) the standard L-capacity and by ω E the minimal width of E, that is, the minimal Euclidean distance between two supporting hyperplanes...

The real symmetric matrices of odd order with a P-set of maximum size

Zhibin Du, Carlos Martins da Fonseca (2016)

Czechoslovak Mathematical Journal

Similarity:

Suppose that A is a real symmetric matrix of order n . Denote by m A ( 0 ) the nullity of A . For a nonempty subset α of { 1 , 2 , ... , n } , let A ( α ) be the principal submatrix of A obtained from A by deleting the rows and columns indexed by α . When m A ( α ) ( 0 ) = m A ( 0 ) + | α | , we call α a P-set of A . It is known that every P-set of A contains at most n / 2 elements. The graphs of even order for which one can find a matrix attaining this bound are now completely characterized. However, the odd case turned out to be more difficult to tackle. As...

On the symmetric algebra of certain first syzygy modules

Gaetana Restuccia, Zhongming Tang, Rosanna Utano (2022)

Czechoslovak Mathematical Journal

Similarity:

Let ( R , 𝔪 ) be a standard graded K -algebra over a field K . Then R can be written as S / I , where I ( x 1 , ... , x n ) 2 is a graded ideal of a polynomial ring S = K [ x 1 , ... , x n ] . Assume that n 3 and I is a strongly stable monomial ideal. We study the symmetric algebra Sym R ( Syz 1 ( 𝔪 ) ) of the first syzygy module Syz 1 ( 𝔪 ) of 𝔪 . When the minimal generators of I are all of degree 2, the dimension of Sym R ( Syz 1 ( 𝔪 ) ) is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.