The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Hopf π -crossed biproduct and related coquasitriangular structures”

The duality theorem for twisted smash products of Hopf algebras and its applications

Zhongwei Wang, Liangyun Zhang (2015)

Colloquium Mathematicae

Similarity:

Let A T H denote the twisted smash product of an arbitrary algebra A and a Hopf algebra H over a field. We present an analogue of the celebrated Blattner-Montgomery duality theorem for A T H , and as an application we establish the relationship between the homological dimensions of A T H and A if H and its dual H* are both semisimple.

Monomorphisms of coalgebras

A. L. Agore (2010)

Colloquium Mathematicae

Similarity:

We prove new necessary and sufficient conditions for a morphism of coalgebras to be a monomorphism, different from the ones already available in the literature. More precisely, φ: C → D is a monomorphism of coalgebras if and only if the first cohomology groups of the coalgebras C and D coincide if and only if i I ε ( a i ) b i = i I a i ε ( b i ) for all i I a i b i C D C . In particular, necessary and sufficient conditions for a Hopf algebra map to be a monomorphism are given.

A new way to iterate Brzeziński crossed products

Leonard Dăuş, Florin Panaite (2016)

Colloquium Mathematicae

Similarity:

If A R , σ V and A P , ν W are two Brzeziński crossed products and Q: W⊗ V → V⊗ W is a linear map satisfying certain properties, we construct a Brzeziński crossed product A S , θ ( V W ) . This construction contains as a particular case the iterated twisted tensor product of algebras.

Yetter-Drinfeld-Long bimodules are modules

Daowei Lu, Shuan Hong Wang (2017)

Czechoslovak Mathematical Journal

Similarity:

Let H be a finite-dimensional bialgebra. In this paper, we prove that the category ℒℛ ( H ) of Yetter-Drinfeld-Long bimodules, introduced by F. Panaite, F. Van Oystaeyen (2008), is isomorphic to the Yetter-Drinfeld category H H * H H * 𝒴𝒟 over the tensor product bialgebra H H * as monoidal categories. Moreover if H is a finite-dimensional Hopf algebra with bijective antipode, the isomorphism is braided. Finally, as an application of this category isomorphism, we give two results.

The structures of Hopf * -algebra on Radford algebras

Hassan Suleman Esmael Mohammed, Hui-Xiang Chen (2019)

Czechoslovak Mathematical Journal

Similarity:

We investigate the structures of Hopf * -algebra on the Radford algebras over . All the * -structures on H are explicitly given. Moreover, these Hopf * -algebra structures are classified up to equivalence.

A construction of the Hom-Yetter-Drinfeld category

Haiying Li, Tianshui Ma (2014)

Colloquium Mathematicae

Similarity:

In continuation of our recent work about smash product Hom-Hopf algebras [Colloq. Math. 134 (2014)], we introduce the Hom-Yetter-Drinfeld category H H via the Radford biproduct Hom-Hopf algebra, and prove that Hom-Yetter-Drinfeld modules can provide solutions of the Hom-Yang-Baxter equation and H H is a pre-braided tensor category, where (H,β,S) is a Hom-Hopf algebra. Furthermore, we show that ( A H , α β ) is a Radford biproduct Hom-Hopf algebra if and only if (A,α) is a Hom-Hopf algebra in the category...

The bicrossed products of H 4 and H 8

Daowei Lu, Yan Ning, Dingguo Wang (2020)

Czechoslovak Mathematical Journal

Similarity:

Let H 4 and H 8 be the Sweedler’s and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through H 8 and H 4 (equivalently, any bicrossed product between the Hopf algebras H 8 and H 4 ) must be isomorphic to one of the following four Hopf algebras: H 8 H 4 , H 32 , 1 , H 32 , 2 , H 32 , 3 . The set of all matched pairs ( H 8 , H 4 , , ) is explicitly described, and then the associated bicrossed product is given by generators and relations.

Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra

Xing Wang, Daowei Lu, Ding-Guo Wang (2024)

Czechoslovak Mathematical Journal

Similarity:

We study certain subgroups of the Hopf group-coalgebra automorphism group of Radford’s π -biproduct. Firstly, we discuss the endomorphism monoid End π -Hopf ( A × H , p ) and the automorphism group Aut π -Hopf ( A × H , p ) of Radford’s π -biproduct A × H = { A × H α } α π , and prove that the automorphism has a factorization closely related to the factors A and H = { H α } α π . What’s more interesting is that a pair of maps ( F L , F R ) can be used to describe a family of mappings F = { F α } α π . Secondly, we consider the relationship between the automorphism group Aut π -Hopf ( A × H , p ) and the automorphism group...

Classification of ideals of 8 -dimensional Radford Hopf algebra

Yu Wang (2022)

Czechoslovak Mathematical Journal

Similarity:

Let H m , n be the m n 2 -dimensional Radford Hopf algebra over an algebraically closed field of characteristic zero. We give the classification of all ideals of 8 -dimensional Radford Hopf algebra H 2 , 2 by generators.

Cobraided smash product Hom-Hopf algebras

Tianshui Ma, Haiying Li, Tao Yang (2014)

Colloquium Mathematicae

Similarity:

Let (A,α) and (B,β) be two Hom-Hopf algebras. We construct a new class of Hom-Hopf algebras: R-smash products ( A R B , α β ) . Moreover, necessary and sufficient conditions for ( A R B , α β ) to be a cobraided Hom-Hopf algebra are given.

A class of quantum doubles of pointed Hopf algebras of rank one

Hua Sun, Yueming Li (2023)

Czechoslovak Mathematical Journal

Similarity:

We construct a class of quantum doubles D ( H D n ) of pointed Hopf algebras of rank one H 𝒟 . We describe the algebra structures of D ( H D n ) by generators with relations. Moreover, we give the comultiplication Δ D , counit ε D and the antipode S D , respectively.

Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra

Liufeng Cao, Dong Su, Hua Yao (2023)

Czechoslovak Mathematical Journal

Similarity:

Let r ( 𝔴 2 0 ) be the Green ring of the weak Hopf algebra 𝔴 2 0 corresponding to Sweedler’s 4-dimensional Hopf algebra H 2 , and let Aut ( R ( 𝔴 2 0 ) ) be the automorphism group of the Green algebra R ( 𝔴 2 0 ) = r ( 𝔴 2 0 ) . We show that the quotient group Aut ( R ( 𝔴 2 0 ) ) / C 2 S 3 , where C 2 contains the identity map and is isomorphic to the infinite group ( * , × ) and S 3 is the symmetric group of order 6.

Automorphism group of representation ring of the weak Hopf algebra H 8 ˜

Dong Su, Shilin Yang (2018)

Czechoslovak Mathematical Journal

Similarity:

Let H 8 be the unique noncommutative and noncocommutative eight dimensional semi-simple Hopf algebra. We first construct a weak Hopf algebra H 8 ˜ based on H 8 , then we investigate the structure of the representation ring of H 8 ˜ . Finally, we prove that the automorphism group of r ( H 8 ˜ ) is just isomorphic to D 6 , where D 6 is the dihedral group with order 12.

Relating quantum and braided Lie algebras

X. Gomez, S. Majid (2003)

Banach Center Publications

Similarity:

We outline our recent results on bicovariant differential calculi on co-quasitriangular Hopf algebras, in particular that if Γ is a quantum tangent space (quantum Lie algebra) for a CQT Hopf algebra A, then the space k Γ is a braided Lie algebra in the category of A-comodules. An important consequence of this is that the universal enveloping algebra U ( Γ ) is a bialgebra in the category of A-comodules.

Covariantization of quantized calculi over quantum groups

Seyed Ebrahim Akrami, Shervin Farzi (2020)

Mathematica Bohemica

Similarity:

We introduce a method for construction of a covariant differential calculus over a Hopf algebra A from a quantized calculus d a = [ D , a ] , a A , where D is a candidate for a Dirac operator for A . We recover the method of construction of a bicovariant differential calculus given by T. Brzeziński and S. Majid created from a central element of the dual Hopf algebra A . We apply this method to the Dirac operator for the quantum SL ( 2 ) given by S. Majid. We find that the differential calculus obtained by our...

Separable functors for the category of Doi Hom-Hopf modules

Shuangjian Guo, Xiaohui Zhang (2016)

Colloquium Mathematicae

Similarity:

Let ̃ ( k ) ( H ) A C be the category of Doi Hom-Hopf modules, ̃ ( k ) A be the category of A-Hom-modules, and F be the forgetful functor from ̃ ( k ) ( H ) A C to ̃ ( k ) A . The aim of this paper is to give a necessary and suffcient condition for F to be separable. This leads to a generalized notion of integral. Finally, applications of our results are given. In particular, we prove a Maschke type theorem for Doi Hom-Hopf modules.

Two results of n -exangulated categories

Jian He, Jing He, Panyue Zhou (2024)

Czechoslovak Mathematical Journal

Similarity:

M. Herschend, Y. Liu, H. Nakaoka introduced n -exangulated categories, which are a simultaneous generalization of n -exact categories and ( n + 2 ) -angulated categories. This paper consists of two results on n -exangulated categories: (1) we give an equivalent characterization of axiom (EA2); (2) we provide a new way to construct a closed subfunctor of an n -exangulated category.