Displaying similar documents to “Hopf π -crossed biproduct and related coquasitriangular structures”

The duality theorem for twisted smash products of Hopf algebras and its applications

Zhongwei Wang, Liangyun Zhang (2015)

Colloquium Mathematicae

Similarity:

Let A T H denote the twisted smash product of an arbitrary algebra A and a Hopf algebra H over a field. We present an analogue of the celebrated Blattner-Montgomery duality theorem for A T H , and as an application we establish the relationship between the homological dimensions of A T H and A if H and its dual H* are both semisimple.

Monomorphisms of coalgebras

A. L. Agore (2010)

Colloquium Mathematicae

Similarity:

We prove new necessary and sufficient conditions for a morphism of coalgebras to be a monomorphism, different from the ones already available in the literature. More precisely, φ: C → D is a monomorphism of coalgebras if and only if the first cohomology groups of the coalgebras C and D coincide if and only if i I ε ( a i ) b i = i I a i ε ( b i ) for all i I a i b i C D C . In particular, necessary and sufficient conditions for a Hopf algebra map to be a monomorphism are given.

A new way to iterate Brzeziński crossed products

Leonard Dăuş, Florin Panaite (2016)

Colloquium Mathematicae

Similarity:

If A R , σ V and A P , ν W are two Brzeziński crossed products and Q: W⊗ V → V⊗ W is a linear map satisfying certain properties, we construct a Brzeziński crossed product A S , θ ( V W ) . This construction contains as a particular case the iterated twisted tensor product of algebras.

Yetter-Drinfeld-Long bimodules are modules

Daowei Lu, Shuan Hong Wang (2017)

Czechoslovak Mathematical Journal

Similarity:

Let H be a finite-dimensional bialgebra. In this paper, we prove that the category ℒℛ ( H ) of Yetter-Drinfeld-Long bimodules, introduced by F. Panaite, F. Van Oystaeyen (2008), is isomorphic to the Yetter-Drinfeld category H H * H H * 𝒴𝒟 over the tensor product bialgebra H H * as monoidal categories. Moreover if H is a finite-dimensional Hopf algebra with bijective antipode, the isomorphism is braided. Finally, as an application of this category isomorphism, we give two results.

The structures of Hopf * -algebra on Radford algebras

Hassan Suleman Esmael Mohammed, Hui-Xiang Chen (2019)

Czechoslovak Mathematical Journal

Similarity:

We investigate the structures of Hopf * -algebra on the Radford algebras over . All the * -structures on H are explicitly given. Moreover, these Hopf * -algebra structures are classified up to equivalence.

A construction of the Hom-Yetter-Drinfeld category

Haiying Li, Tianshui Ma (2014)

Colloquium Mathematicae

Similarity:

In continuation of our recent work about smash product Hom-Hopf algebras [Colloq. Math. 134 (2014)], we introduce the Hom-Yetter-Drinfeld category H H via the Radford biproduct Hom-Hopf algebra, and prove that Hom-Yetter-Drinfeld modules can provide solutions of the Hom-Yang-Baxter equation and H H is a pre-braided tensor category, where (H,β,S) is a Hom-Hopf algebra. Furthermore, we show that ( A H , α β ) is a Radford biproduct Hom-Hopf algebra if and only if (A,α) is a Hom-Hopf algebra in the category...

The bicrossed products of H 4 and H 8

Daowei Lu, Yan Ning, Dingguo Wang (2020)

Czechoslovak Mathematical Journal

Similarity:

Let H 4 and H 8 be the Sweedler’s and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through H 8 and H 4 (equivalently, any bicrossed product between the Hopf algebras H 8 and H 4 ) must be isomorphic to one of the following four Hopf algebras: H 8 H 4 , H 32 , 1 , H 32 , 2 , H 32 , 3 . The set of all matched pairs ( H 8 , H 4 , , ) is explicitly described, and then the associated bicrossed product is given by generators and relations.

Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra

Xing Wang, Daowei Lu, Ding-Guo Wang (2024)

Czechoslovak Mathematical Journal

Similarity:

We study certain subgroups of the Hopf group-coalgebra automorphism group of Radford’s π -biproduct. Firstly, we discuss the endomorphism monoid End π -Hopf ( A × H , p ) and the automorphism group Aut π -Hopf ( A × H , p ) of Radford’s π -biproduct A × H = { A × H α } α π , and prove that the automorphism has a factorization closely related to the factors A and H = { H α } α π . What’s more interesting is that a pair of maps ( F L , F R ) can be used to describe a family of mappings F = { F α } α π . Secondly, we consider the relationship between the automorphism group Aut π -Hopf ( A × H , p ) and the automorphism group...

Classification of ideals of 8 -dimensional Radford Hopf algebra

Yu Wang (2022)

Czechoslovak Mathematical Journal

Similarity:

Let H m , n be the m n 2 -dimensional Radford Hopf algebra over an algebraically closed field of characteristic zero. We give the classification of all ideals of 8 -dimensional Radford Hopf algebra H 2 , 2 by generators.

Cobraided smash product Hom-Hopf algebras

Tianshui Ma, Haiying Li, Tao Yang (2014)

Colloquium Mathematicae

Similarity:

Let (A,α) and (B,β) be two Hom-Hopf algebras. We construct a new class of Hom-Hopf algebras: R-smash products ( A R B , α β ) . Moreover, necessary and sufficient conditions for ( A R B , α β ) to be a cobraided Hom-Hopf algebra are given.

A class of quantum doubles of pointed Hopf algebras of rank one

Hua Sun, Yueming Li (2023)

Czechoslovak Mathematical Journal

Similarity:

We construct a class of quantum doubles D ( H D n ) of pointed Hopf algebras of rank one H 𝒟 . We describe the algebra structures of D ( H D n ) by generators with relations. Moreover, we give the comultiplication Δ D , counit ε D and the antipode S D , respectively.

Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra

Liufeng Cao, Dong Su, Hua Yao (2023)

Czechoslovak Mathematical Journal

Similarity:

Let r ( 𝔴 2 0 ) be the Green ring of the weak Hopf algebra 𝔴 2 0 corresponding to Sweedler’s 4-dimensional Hopf algebra H 2 , and let Aut ( R ( 𝔴 2 0 ) ) be the automorphism group of the Green algebra R ( 𝔴 2 0 ) = r ( 𝔴 2 0 ) . We show that the quotient group Aut ( R ( 𝔴 2 0 ) ) / C 2 S 3 , where C 2 contains the identity map and is isomorphic to the infinite group ( * , × ) and S 3 is the symmetric group of order 6.

Automorphism group of representation ring of the weak Hopf algebra H 8 ˜

Dong Su, Shilin Yang (2018)

Czechoslovak Mathematical Journal

Similarity:

Let H 8 be the unique noncommutative and noncocommutative eight dimensional semi-simple Hopf algebra. We first construct a weak Hopf algebra H 8 ˜ based on H 8 , then we investigate the structure of the representation ring of H 8 ˜ . Finally, we prove that the automorphism group of r ( H 8 ˜ ) is just isomorphic to D 6 , where D 6 is the dihedral group with order 12.

Relating quantum and braided Lie algebras

X. Gomez, S. Majid (2003)

Banach Center Publications

Similarity:

We outline our recent results on bicovariant differential calculi on co-quasitriangular Hopf algebras, in particular that if Γ is a quantum tangent space (quantum Lie algebra) for a CQT Hopf algebra A, then the space k Γ is a braided Lie algebra in the category of A-comodules. An important consequence of this is that the universal enveloping algebra U ( Γ ) is a bialgebra in the category of A-comodules.

Covariantization of quantized calculi over quantum groups

Seyed Ebrahim Akrami, Shervin Farzi (2020)

Mathematica Bohemica

Similarity:

We introduce a method for construction of a covariant differential calculus over a Hopf algebra A from a quantized calculus d a = [ D , a ] , a A , where D is a candidate for a Dirac operator for A . We recover the method of construction of a bicovariant differential calculus given by T. Brzeziński and S. Majid created from a central element of the dual Hopf algebra A . We apply this method to the Dirac operator for the quantum SL ( 2 ) given by S. Majid. We find that the differential calculus obtained by our...

Separable functors for the category of Doi Hom-Hopf modules

Shuangjian Guo, Xiaohui Zhang (2016)

Colloquium Mathematicae

Similarity:

Let ̃ ( k ) ( H ) A C be the category of Doi Hom-Hopf modules, ̃ ( k ) A be the category of A-Hom-modules, and F be the forgetful functor from ̃ ( k ) ( H ) A C to ̃ ( k ) A . The aim of this paper is to give a necessary and suffcient condition for F to be separable. This leads to a generalized notion of integral. Finally, applications of our results are given. In particular, we prove a Maschke type theorem for Doi Hom-Hopf modules.

Two results of n -exangulated categories

Jian He, Jing He, Panyue Zhou (2024)

Czechoslovak Mathematical Journal

Similarity:

M. Herschend, Y. Liu, H. Nakaoka introduced n -exangulated categories, which are a simultaneous generalization of n -exact categories and ( n + 2 ) -angulated categories. This paper consists of two results on n -exangulated categories: (1) we give an equivalent characterization of axiom (EA2); (2) we provide a new way to construct a closed subfunctor of an n -exangulated category.

One-sided n -suspended categories

Jing He, Yonggang Hu, Panyue Zhou (2024)

Czechoslovak Mathematical Journal

Similarity:

For an integer n 3 , we introduce a simultaneous generalization of ( n - 2 ) -exact categories and n -angulated categories, referred to as one-sided n -suspended categories. Notably, one-sided n -angulated categories are specific instances of this structure. We establish a framework for transitioning from these generalized categories to their n -angulated counterparts. Additionally, we present a method for constructing n -angulated quotient categories from Frobenius n -prile categories. Our results unify...

The Group of Invertible Elements of the Algebra of Quaternions

Irina A. Kuzmina, Marie Chodorová (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

We have, that all two-dimensional subspaces of the algebra of quaternions, containing a unit, are 2-dimensional subalgebras isomorphic to the algebra of complex numbers. It was proved in the papers of N. E. Belova. In the present article we consider a 2-dimensional subalgebra ( i ) of complex numbers with basis 1 , i and we construct the principal locally trivial bundle which is isomorphic to the Hopf fibration.