Displaying similar documents to “Applications depuis K ( / p , 2 ) et une conjecture de N. Kuhn”

Quelques résultats d'isomorphisme entre groupes de cohomologie

Salomon Sambou, Mansour Sané (2012)

Annales Polonici Mathematici

Similarity:

Nous montrons des isomorphismes entre groupes de cohomologie des formes différentielles de classe C et celles de classe C l pour un ouvert Ω d’une variété analytique complexe. On montre que ces résultats sont également vrais pour les courants prolongeables. On en déduit un résultat d’isomorphisme entre le groupe H 0 , r l ( S ) de cohomologie de Dolbeault des formes différentielles de classe C l sur une hypersurface réelle S et celui des courants sur S noté H 0 , r c o u r ( S ) .

Comparaison entre cohomologie cristalline et cohomologie étale p -adique sur certaines variétés de Shimura

Sandra Rozensztajn (2009)

Bulletin de la Société Mathématique de France

Similarity:

Soit X un modèle entier en un premier p d’une variété de Shimura de type PEL, ayant bonne réduction associée à un groupe réductif G . On peut associer aux p -représentations du groupe G deux types de faisceaux : des cristaux sur la fibre spéciale de X , et des systèmes locaux pour la topologie étale sur la fibre générique. Nous établissons un théorème de comparaison entre la cohomologie de ces deux types de faisceaux.

Cohomologie et K-théorie équivariantes des variétés de Bott-Samelson et des variétés de drapeaux

Matthieu Willems (2004)

Bulletin de la Société Mathématique de France

Similarity:

L’objet de cet article est de calculer la cohomologie et la K-théorie équivariantes des variétés de Bott-Samelson (théorèmes 3.3 et 4.3) et d’en déduire des résultats sur les variétés de drapeaux des groupes de Kac-Moody. Dans la section 3, on retrouve la formule de restriction aux points fixes de la base { ξ ^ w } w W de H T * ( G / B ) (théorème 3.9) prouvée par Sara Billey dans [4]. Dans la section 4, on donne l’expression explicite de la restriction aux points fixes de la base { ψ ^ w } w W de K T ( G / B ) définie par Kostant et...

Résultats sur la conjecture de dualité étrange sur le plan projectif

Gentiana Danila (2002)

Bulletin de la Société Mathématique de France

Similarity:

La conjecture de « dualité étrange » de Le Potier donne un isomorphisme entre l’espace des sections du fibré déterminant sur deux espaces de modules différents de faisceaux semi-stables sur le plan projectif 2 . On considère deux classes orthogonales c , u dans l’algèbre de Grothendieck K ( 2 ) telles que c est de rang strictement positif et u est de rang zéro, et on note M c et M u les espaces de modules de faisceaux semi-stables de classe c , respectivement u sur 2 . Il existe sur M c (resp. M u ) un fibré...

Sur la théorie de Hida pour le groupe GSp 2 g

Vincent Pilloni (2012)

Bulletin de la Société Mathématique de France

Similarity:

Nous construisons des familles ordinaires p -adiques de formes modulaires pour le groupe GSp 2 g . Notre travail généralise et précise des travaux antérieurs de Hida.

Platitude du module universel pour GL 3 en caractéristique non banale

Joël Bellaïche, Ania Otwinowska (2003)

Bulletin de la Société Mathématique de France

Similarity:

Soient F un corps p -adique, G = GL 3 ( F ) . Pour χ un caractère de l’algèbre de Hecke sphérique de G sur un anneau commutatif k , on introduit à la suite de Serre une représentation lisse M χ de G sur k qui gouverne la théorie des représentations non ramifiées de G sur k . Nous prouvons que M χ est plat sur k et que si p est inversible dans  k , alors pour tout sous-groupe compact ouvert suffisament petit  U de G , le module  M χ U est libre de rang fini sur k . Ceci était conjecturé par Lazarus. Comme corollaire,...

𝒟 -modules arithmétiques surholonomes

Daniel Caro (2009)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Soient k un corps parfait de caractéristique p > 0 , U une variété sur k et F une puissance de Frobenius. Nous construisons la catégorie des ( F -) 𝒟 -modules arithmétiques surholonomes sur U et celle des ( F -)complexes de 𝒟 -modules arithmétiques sur U surholonomes. Nous montrons que les complexes surholonomes sont stables par images directes, images inverses, images inverses extraordinaires, images directes extraordinaires, foncteurs duaux. De plus, lorsque U est lisse, nous vérifions que les...

Groupe de Brauer non ramifié d’espaces homogènes de tores

Jean-Louis Colliot-Thélène (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Soient k un corps et X une k -variété projective et lisse. Si X est géométriquement rationnelle, on dispose d’une application injective du quotient de groupes de Brauer Br ( X ) / Br ( k ) dans le premier groupe de cohomologie galoisienne du réseau défini par le groupe de Picard géométrique de X . Dans cette note on donne des cas où cette application est toujours surjective. Pour les espaces homogènes de certains tores algébriques, on donne des générateurs explicites dans Br ( X ) . On applique cela à l’étude du...

La filtration canonique des points de torsion des groupes p -divisibles

Laurent Fargues (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Étant donnés un entier n 1 et un groupe de Barsotti-Tate tronqué d’échelon  n et de dimension d sur un anneau de valuation d’inégales caractéristiques, nous donnons une borne explicite sur son invariant de Hasse qui implique que sa filtration de Harder-Narasimhan possède un sous-groupe libre de rang d . Lorsque n = 1 nous redémontrons également le théorème d’Abbes-Mokrane ([120]) et de Tian ([164]) par des méthodes locales. On applique cela aux familles p -adiques de tels objets et en particulier...

Sur les orbites d’un sous-groupe sphérique dans la variété des drapeaux

Nicolas Ressayre (2004)

Bulletin de la Société Mathématique de France

Similarity:

Soient G un groupe algébrique complexe réductif et connexe, B un sous-groupe de Borel de G et H un sous-groupe sphérique de G . Soit X un plongement G × G -équivariant de G . Nous savons que B × H n’a qu’un nombre fini d’orbites dans G  ; nous montrons qu’il n’en a qu’un nombre fini dans X . Soit V ¯ l’adhérence dans X d’une orbite de B × H dans G et 𝒪 ¯ l’adhérence d’une orbite de G × G dans X . Si X est toroïdal, nous montrons que l’intersection V ¯ 𝒪 ¯ est propre dans X et la décrivons ensemblistement. Si de plus...

Valeur en 2 de fonctions L de formes modulaires de poids 2 : théorème de Beilinson explicite

François Brunault (2007)

Bulletin de la Société Mathématique de France

Similarity:

Nous montrons une version explicite du théorème de Beilinson pour la courbe modulaire X 1 ( N ) . Ce résultat est la première étape d’un travail reliant, d’une part, la valeur en 2 de la fonction L d’une forme primitive de poids 2 , et d’autre part, la fonction dilogarithme associée à la courbe modulaire correspondante, dans l’esprit de la conjecture de Zagier pour les courbes elliptiques. Comme corollaire de notre théorème, dans le cas où N est premier, nous répondons à une question de Schappacher...