Displaying similar documents to “Non-generic blow-up solutions for the critical focusing NLS in 1-D”

Existence and multiplicity results for a nonlinear stationary Schrödinger equation

Danila Sandra Moschetto (2010)

Annales Polonici Mathematici

Similarity:

We revisit Kristály’s result on the existence of weak solutions of the Schrödinger equation of the form -Δu + a(x)u = λb(x)f(u), x N , u H ¹ ( N ) , where λ is a positive parameter, a and b are positive functions, while f : is sublinear at infinity and superlinear at the origin. In particular, by using Ricceri’s recent three critical points theorem, we show that, under the same hypotheses, a much more precise conclusion can be obtained.

On the number of positive solutions of singularly perturbed 1D nonlinear Schrödinger equations

Patricio Felmer, Salomé Martínez, Kazunaga Tanaka (2006)

Journal of the European Mathematical Society

Similarity:

We study singularly perturbed 1D nonlinear Schrödinger equations (1.1). When V ( x ) has multiple critical points, (1.1) has a wide variety of positive solutions for small ε and the number of positive solutions increases to as ε 0 . We give an estimate of the number of positive solutions whose growth order depends on the number of local maxima of V ( x ) . Envelope functions or equivalently adiabatic profiles of high frequency solutions play an important role in the proof.

Separation properties for self-conformal sets

Yuan-Ling Ye (2002)

Studia Mathematica

Similarity:

For a one-to-one self-conformal contractive system w j j = 1 m on d with attractor K and conformality dimension α, Peres et al. showed that the open set condition and strong open set condition are both equivalent to 0 < α ( K ) < . We give a simple proof of this result as well as discuss some further properties related to the separation condition.

Global existence of solutions to Schrödinger equations on compact riemannian manifolds below H 1

Sijia Zhong (2010)

Bulletin de la Société Mathématique de France

Similarity:

In this paper, we will study global well-posedness for the cubic defocusing nonlinear Schrödinger equations on the compact Riemannian manifold without boundary, below the energy space, i.e. s &lt; 1 , under some bilinear Strichartz assumption. We will find some s ˜ &lt; 1 , such that the solution is global for s &gt; s ˜ .

Global well-posedness for the Klein-Gordon-Schrödinger system with higher order coupling

Agus Leonardi Soenjaya (2022)

Mathematica Bohemica

Similarity:

Global well-posedness for the Klein-Gordon-Schrödinger system with generalized higher order coupling, which is a system of PDEs in two variables arising from quantum physics, is proven. It is shown that the system is globally well-posed in ( u , n ) L 2 × L 2 under some conditions on the nonlinearity (the coupling term), by using the L 2 conservation law for u and controlling the growth of n via the estimates in the local theory. In particular, this extends the well-posedness results for such a system in...

Waves in Honeycomb Structures

Charles L. Fefferman, Michael I. Weinstein (2012)

Journées Équations aux dérivées partielles

Similarity:

We review recent work of the authors on the non-relativistic Schrödinger equation with a honeycomb lattice potential, V . In particular, we summarize results on (i) the existence of Dirac points, conical singularities in dispersion surfaces of H V = - Δ + V and (ii) the two-dimensional Dirac equations, as the large (but finite) time effective system of equations governing the evolution e - i H V t ψ 0 , for data ψ 0 , which is spectrally localized near a Dirac point. We conclude with a formal derivation and discussion...

Lower quantization coefficient and the F-conformal measure

Mrinal Kanti Roychowdhury (2011)

Colloquium Mathematicae

Similarity:

Let F = f ( i ) : 1 i N be a family of Hölder continuous functions and let φ i : 1 i N be a conformal iterated function system. Lindsay and Mauldin’s paper [Nonlinearity 15 (2002)] left an open question whether the lower quantization coefficient for the F-conformal measure on a conformal iterated funcion system satisfying the open set condition is positive. This question was positively answered by Zhu. The goal of this paper is to present a different proof of this result.

Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential

Jaeyoung Byeon, Kazunaga Tanaka (2013)

Journal of the European Mathematical Society

Similarity:

We consider a singularly perturbed elliptic equation ϵ 2 Δ u - V ( x ) u + f ( u ) = 0 , u ( x ) > 0 on N , 𝚕𝚒𝚖 x u ( x ) = 0 , where V ( x ) > 0 for any x N . The singularly perturbed problem has corresponding limiting problems Δ U - c U + f ( U ) = 0 , U ( x ) > 0 on N , 𝚕𝚒𝚖 x U ( x ) = 0 , c > 0 . Berestycki-Lions found almost necessary and sufficient conditions on nonlinearity f for existence of a solution of the limiting problem. There have been endeavors to construct solutions of the singularly perturbed problem concentrating around structurally stable critical points of potential V under possibly general conditions...

Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity

Antonio Ambrosetti, Veronica Felli, Andrea Malchiodi (2005)

Journal of the European Mathematical Society

Similarity:

We deal with a class on nonlinear Schrödinger equations (NLS) with potentials V ( x ) | x | α , 0 < α < 2 , and K ( x ) | x | β , β > 0 . Working in weighted Sobolev spaces, the existence of ground states v ε belonging to W 1 , 2 ( N ) is proved under the assumption that σ < p < ( N + 2 ) / ( N 2 ) for some σ = σ N , α , β . Furthermore, it is shown that v ε are spikes concentrating at a minimum point of 𝒜 = V θ K 2 / ( p 1 ) , where θ = ( p + 1 ) / ( p 1 ) 1 / 2 .

The Cauchy problem for the liquid crystals system in the critical Besov space with negative index

Sen Ming, Han Yang, Zili Chen, Ls Yong (2017)

Czechoslovak Mathematical Journal

Similarity:

The local well-posedness for the Cauchy problem of the liquid crystals system in the critical Besov space B ˙ p , 1 n / p - 1 ( n ) × B ˙ p , 1 n / p ( n ) with n < p < 2 n is established by using the heat semigroup theory and the Littlewood-Paley theory. The global well-posedness for the system is obtained with small initial datum by using the fixed point theorem. The blow-up results for strong solutions to the system are also analysed.

A variational analysis of a gauged nonlinear Schrödinger equation

Alessio Pomponio, David Ruiz (2015)

Journal of the European Mathematical Society

Similarity:

This paper is motivated by a gauged Schrödinger equation in dimension 2 including the so-called Chern-Simons term. The study of radial stationary states leads to the nonlocal problem: - Δ u ( x ) + ω + h 2 ( | x | ) | x | 2 + | x | + h ( s ) s u 2 ( s ) d s u ( x ) = | u ( x ) | p - 1 u ( x ) , where h ( r ) = 1 2 0 r s u 2 ( s ) d s . This problem is the Euler-Lagrange equation of a certain energy functional. In this paper the study of the global behavior of such functional is completed. We show that for p ( 1 , 3 ) , the functional may be bounded from below or not, depending on ω . Quite surprisingly, the threshold value for ω is explicit....

On the equivalence of Green functions for general Schrödinger operators on a half-space

Abdoul Ifra, Lotfi Riahi (2004)

Annales Polonici Mathematici

Similarity:

We consider the general Schrödinger operator L = d i v ( A ( x ) x ) - μ on a half-space in ℝⁿ, n ≥ 3. We prove that the L-Green function G exists and is comparable to the Laplace-Green function G Δ provided that μ is in some class of signed Radon measures. The result extends the one proved on the half-plane in [9] and covers the case of Schrödinger operators with potentials in the Kato class at infinity K considered by Zhao and Pinchover. As an application we study the cone L ( ) of all positive L-solutions continuously...

On the conformal gauge of a compact metric space

Matias Carrasco Piaggio (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

In this article we study the Ahlfors regular conformal gauge of a compact metric space ( X , d ) , and its conformal dimension dim A R ( X , d ) . Using a sequence of finite coverings of  ( X , d ) , we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gauge. We show how to compute dim A R ( X , d ) using the critical exponent Q N associated to the combinatorial modulus.

Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space

Andrea R. Nahmod, Gigliola Staffilani (2015)

Journal of the European Mathematical Society

Similarity:

We also prove a long time existence result; more precisely we prove that for fixed T > 0 there exists a set Σ T , ( Σ T ) > 0 such that any data φ ω ( x ) H γ ( 𝕋 3 ) , γ < 1 , ω Σ T , evolves up to time T into a solution u ( t ) with u ( t ) - e i t Δ φ ω C ( [ 0 , T ] ; H s ( 𝕋 3 ) ) , s = s ( γ ) > 1 . In particular we find a nontrivial set of data which gives rise to long time solutions below the critical space H 1 ( 𝕋 3 ) , that is in the supercritical scaling regime.

Conformal Killing graphs in foliated Riemannian spaces with density: rigidity and stability

Marco L. A. Velásquez, André F. A. Ramalho, Henrique F. de Lima, Márcio S. Santos, Arlandson M. S. Oliveira (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we investigate the geometry of conformal Killing graphs in a Riemannian manifold M ¯ f n + 1 endowed with a weight function f and having a closed conformal Killing vector field V with conformal factor ψ V , that is, graphs constructed through the flow generated by V and which are defined over an integral leaf of the foliation V orthogonal to V . For such graphs, we establish some rigidity results under appropriate constraints on the f -mean curvature. Afterwards, we obtain some stability...

Unconditional uniqueness of higher order nonlinear Schrödinger equations

Friedrich Klaus, Peer Kunstmann, Nikolaos Pattakos (2021)

Czechoslovak Mathematical Journal

Similarity:

We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data u 0 X , where X { M 2 , q s ( ) , H σ ( 𝕋 ) , H s 1 ( ) + H s 2 ( 𝕋 ) } and q [ 1 , 2 ] , s 0 , or σ 0 , or s 2 s 1 0 . Moreover, if M 2 , q s ( ) L 3 ( ) , or if σ 1 6 , or if s 1 1 6 and s 2 > 1 2 we show that the Cauchy problem is unconditionally wellposed in X . Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ...

Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains

Toshiyuki Suzuki (2014)

Mathematica Bohemica

Similarity:

Nonlinear Schrödinger equations (NLS) a with strongly singular potential a | x | - 2 on a bounded domain Ω are considered. If Ω = N and a > - ( N - 2 ) 2 / 4 , then the global existence of weak solutions is confirmed by applying the energy methods established by N. Okazawa, T. Suzuki, T. Yokota (2012). Here a = - ( N - 2 ) 2 / 4 is excluded because D ( P a ( N ) 1 / 2 ) is not equal to H 1 ( N ) , where P a ( N ) : = - Δ - ( N - 2 ) 2 / ( 4 | x | 2 ) is nonnegative and selfadjoint in L 2 ( N ) . On the other hand, if Ω is a smooth and bounded domain with 0 Ω , the Hardy-Poincaré inequality is proved in J. L. Vazquez, E. Zuazua...

Existence of a positive ground state solution for a Kirchhoff type problem involving a critical exponent

Lan Zeng, Chun Lei Tang (2016)

Annales Polonici Mathematici

Similarity:

We consider the following Kirchhoff type problem involving a critical nonlinearity: ⎧ - [ a + b ( Ω | u | ² d x ) m ] Δ u = f ( x , u ) + | u | 2 * - 2 u in Ω, ⎨ ⎩ u = 0 on ∂Ω, where Ω N (N ≥ 3) is a smooth bounded domain with smooth boundary ∂Ω, a > 0, b ≥ 0, and 0 < m < 2/(N-2). Under appropriate assumptions on f, we show the existence of a positive ground state solution via the variational method.