Displaying similar documents to “Finite projective planes, Fermat curves, and Gaussian periods”

A Note on Lax Projective Embeddings of Grassmann Spaces

Eva Ferrara Dentice (2018)

Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche

Similarity:

In the paper (Ferrara Dentice et al., 2004) a complete exposition of the state of the art for lax embeddings of polar spaces of finite rank 3 is presented. As a consequence, we have that if a Grassmann space G of dimension 3 and index 1 has a lax embedding in a projective space over a skew–field K , then G is the Klein quadric defined over a subfield of K . In this paper, I examine Grassmann spaces of arbitrary dimension d 3 and index h 1 having a lax embedding in a projective space.

On the recognizability of some projective general linear groups by the prime graph

Masoumeh Sajjadi (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a finite group. The prime graph of G is a simple graph Γ ( G ) whose vertex set is π ( G ) and two distinct vertices p and q are joined by an edge if and only if G has an element of order p q . A group G is called k -recognizable by prime graph if there exist exactly k nonisomorphic groups H satisfying the condition Γ ( G ) = Γ ( H ) . A 1-recognizable group is usually called a recognizable group. In this problem, it was proved that PGL ( 2 , p α ) is recognizable, if p is an odd prime and α > 1 is odd. But for even α , only...

The local lifting problem for actions of finite groups on curves

Ted Chinburg, Robert Guralnick, David Harbater (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let k be an algebraically closed field of characteristic p > 0 . We study obstructions to lifting to characteristic 0 the faithful continuous action φ of a finite group G on k [ [ t ] ] . To each such  φ a theorem of Katz and Gabber associates an action of G on a smooth projective curve Y over k . We say that the KGB obstruction of φ vanishes if G acts on a smooth projective curve X in characteristic  0 in such a way that X / H and Y / H have the same genus for all subgroups H G . We determine for which G the KGB...

Monodromy of a family of hypersurfaces

Vincenzo Di Gennaro, Davide Franco (2009)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let Y be an ( m + 1 ) -dimensional irreducible smooth complex projective variety embedded in a projective space. Let Z be a closed subscheme of Y , and δ be a positive integer such that Z , Y ( δ ) is generated by global sections. Fix an integer d δ + 1 , and assume the general divisor X | H 0 ( Y , Z , Y ( d ) ) | is smooth. Denote by H m ( X ; ) Z van the quotient of H m ( X ; ) by the cohomology of Y and also by the cycle classes of the irreducible components of dimension m of Z . In the present paper we prove that the monodromy representation on H m ( X ; ) Z van for the family...

Modular lattices from finite projective planes

Tathagata Basak (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Using the geometry of the projective plane over the finite field 𝔽 q , we construct a Hermitian Lorentzian lattice L q of dimension ( q 2 + q + 2 ) defined over a certain number ring 𝒪 that depends on q . We show that infinitely many of these lattices are p -modular, that is, p L q ' = L q , where p is some prime in 𝒪 such that | p | 2 = q . The Lorentzian lattices L q sometimes lead to construction of interesting positive definite lattices. In particular, if q 3 mod 4 is a rational prime such that ( q 2 + q + 1 ) is norm of some element in...

Homological dimensions for endomorphism algebras of Gorenstein projective modules

Aiping Zhang, Xueping Lei (2024)

Czechoslovak Mathematical Journal

Similarity:

Let A be a CM-finite Artin algebra with a Gorenstein-Auslander generator E , M be a Gorenstein projective A -module and B = End A M . We give an upper bound for the finitistic dimension of B in terms of homological data of M . Furthermore, if A is n -Gorenstein for 2 n < , then we show the global dimension of B is less than or equal to n plus the B -projective dimension of Hom A ( M , E ) . As an application, the global dimension of End A E is less than or equal to n .

A new characterization for the simple group PSL ( 2 , p 2 ) by order and some character degrees

Behrooz Khosravi, Behnam Khosravi, Bahman Khosravi, Zahra Momen (2015)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group and p a prime number. We prove that if G is a finite group of order | PSL ( 2 , p 2 ) | such that G has an irreducible character of degree p 2 and we know that G has no irreducible character θ such that 2 p θ ( 1 ) , then G is isomorphic to PSL ( 2 , p 2 ) . As a consequence of our result we prove that PSL ( 2 , p 2 ) is uniquely determined by the structure of its complex group algebra.

On a system of equations with primes

Paolo Leonetti, Salvatore Tringali (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Given an integer n 3 , let u 1 , ... , u n be pairwise coprime integers 2 , 𝒟 a family of nonempty proper subsets of { 1 , ... , n } with “enough” elements, and ε a function 𝒟 { ± 1 } . Does there exist at least one prime q such that q divides i I u i - ε ( I ) for some I 𝒟 , but it does not divide u 1 u n ? We answer this question in the positive when the u i are prime powers and ε and 𝒟 are subjected to certain restrictions. We use the result to prove that, if ε 0 { ± 1 } and A is a set of three or more primes that contains all prime divisors of any...

A new characterization of symmetric group by NSE

Azam Babai, Zeinab Akhlaghi (2017)

Czechoslovak Mathematical Journal

Similarity:

Let G be a group and ω ( G ) be the set of element orders of G . Let k ω ( G ) and m k ( G ) be the number of elements of order k in G . Let nse ( G ) = { m k ( G ) : k ω ( G ) } . Assume r is a prime number and let G be a group such that nse ( G ) = nse ( S r ) , where S r is the symmetric group of degree r . In this paper we prove that G S r , if r divides the order of G and r 2 does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.

Differences of two semiconvex functions on the real line

Václav Kryštof, Luděk Zajíček (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is proved that real functions on which can be represented as the difference of two semiconvex functions with a general modulus (or of two lower C 1 -functions, or of two strongly paraconvex functions) coincide with semismooth functions on (i.e. those locally Lipschitz functions on for which f + ' ( x ) = lim t x + f + ' ( t ) and f - ' ( x ) = lim t x - f - ' ( t ) for each x ). Further, for each modulus ω , we characterize the class D S C ω of functions on which can be written as f = g - h , where g and h are semiconvex with modulus C ω (for some C > 0 ) using a new...