Displaying similar documents to “The density of representation degrees”

Limits of relatively hyperbolic groups and Lyndon’s completions

Olga Kharlampovich, Alexei Myasnikov (2012)

Journal of the European Mathematical Society

Similarity:

We describe finitely generated groups H universally equivalent (with constants from G in the language) to a given torsion-free relatively hyperbolic group G with free abelian parabolics. It turns out that, as in the free group case, the group H embeds into the Lyndon’s completion G [ t ] of the group G , or, equivalently, H embeds into a group obtained from G by finitely many extensions of centralizers. Conversely, every subgroup of G [ t ] containing G is universally equivalent to G . Since finitely...

The unit groups of semisimple group algebras of some non-metabelian groups of order 144

Gaurav Mittal, Rajendra K. Sharma (2023)

Mathematica Bohemica

Similarity:

We consider all the non-metabelian groups G of order 144 that have exponent either 36 or 72 and deduce the unit group U ( 𝔽 q G ) of semisimple group algebra 𝔽 q G . Here, q denotes the power of a prime, i.e., q = p r for p prime and a positive integer r . Up to isomorphism, there are 6 groups of order 144 that have exponent either 36 or 72 . Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order 144 that are a direct product of two...

Completely bounded lacunary sets for compact non-abelian groups

Kathryn Hare, Parasar Mohanty (2015)

Studia Mathematica

Similarity:

In this paper, we introduce and study the notion of completely bounded Λ p sets ( Λ p c b for short) for compact, non-abelian groups G. We characterize Λ p c b sets in terms of completely bounded L p ( G ) multipliers. We prove that when G is an infinite product of special unitary groups of arbitrarily large dimension, there are sets consisting of representations of unbounded degree that are Λ p sets for all p < ∞, but are not Λ p c b for any p ≥ 4. This is done by showing that the space of completely bounded L p ( G ) ...

A note on normal generation and generation of groups

Andreas Thom (2015)

Communications in Mathematics

Similarity:

In this note we study sets of normal generators of finitely presented residually p -finite groups. We show that if an infinite, finitely presented, residually p -finite group G is normally generated by g 1 , , g k with order n 1 , , n k { 1 , 2 , } { } , then β 1 ( 2 ) ( G ) k - 1 - i = 1 k 1 n i , where β 1 ( 2 ) ( G ) denotes the first 2 -Betti number of G . We also show that any k -generated group with β 1 ( 2 ) ( G ) k - 1 - ε must have girth greater than or equal 1 / ε .

Permutability of centre-by-finite groups

Brunetto Piochi (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Let G be a group and m be an integer greater than or equal to 2 . G is said to be m -permutable if every product of m elements can be reordered at least in one way. We prove that, if G has a centre of finite index z , then G is ( 1 + [ z / 2 ] ) -permutable. More bounds are given on the least m such that G is m -permutable.

Self-small products of abelian groups

Josef Dvořák, Jan Žemlička (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let A and B be two abelian groups. The group A is called B -small if the covariant functor Hom ( A , - ) commutes with all direct sums B ( κ ) and A is self-small provided it is A -small. The paper characterizes self-small products applying developed closure properties of the classes of relatively small groups. As a consequence, self-small products of finitely generated abelian groups are described.

Finite groups whose all proper subgroups are 𝒞 -groups

Pengfei Guo, Jianjun Liu (2018)

Czechoslovak Mathematical Journal

Similarity:

A group G is said to be a 𝒞 -group if for every divisor d of the order of G , there exists a subgroup H of G of order d such that H is normal or abnormal in G . We give a complete classification of those groups which are not 𝒞 -groups but all of whose proper subgroups are 𝒞 -groups.

Representation growth of linear groups

Michael Larsen, Alexander Lubotzky (2008)

Journal of the European Mathematical Society

Similarity:

Let Γ be a group and r n ( Γ ) the number of its n -dimensional irreducible complex representations. We define and study the associated representation zeta function 𝒵 Γ ( s ) = n = 1 r n ( Γ ) n - s . When Γ is an arithmetic group satisfying the congruence subgroup property then 𝒵 Γ ( s ) has an “Euler factorization”. The “factor at infinity” is sometimes called the “Witten zeta function” counting the rational representations of an algebraic group. For these we determine precisely the abscissa of convergence. The local factor at a finite...

Product decompositions of quasirandom groups and a Jordan type theorem

Nikolay Nikolov, László Pyber (2011)

Journal of the European Mathematical Society

Similarity:

We first note that a result of Gowers on product-free sets in groups has an unexpected consequence: If k is the minimal degree of a representation of the finite group G , then for every subset B of G with | B | > | G | / k 1 / 3 we have B 3 = G . We use this to obtain improved versions of recent deep theorems of Helfgott and of Shalev concerning product decompositions of finite simple groups, with much simpler proofs. On the other hand, we prove a version of Jordan’s theorem which implies that if k 2 , then G has a...

The Ribes-Zalesskii property of some one relator groups

Gilbert Mantika, Narcisse Temate-Tangang, Daniel Tieudjo (2022)

Archivum Mathematicum

Similarity:

The profinite topology on any abstract group G , is one such that the fundamental system of neighborhoods of the identity is given by all its subgroups of finite index. We say that a group G has the Ribes-Zalesskii property of rank k , or is RZ k with k a natural number, if any product H 1 H 2 H k of finitely generated subgroups H 1 , H 2 , , H k is closed in the profinite topology on G . And a group is said to have the Ribes-Zalesskii property or is RZ if it is RZ k for any natural number k . In this paper we characterize...

On unit group of finite semisimple group algebras of non-metabelian groups up to order 72

Gaurav Mittal, Rajendra Kumar Sharma (2021)

Mathematica Bohemica

Similarity:

We characterize the unit group of semisimple group algebras 𝔽 q G of some non-metabelian groups, where F q is a field with q = p k elements for p prime and a positive integer k . In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group ( ( C 3 × C 3 ) C 3 ) C 2 of order 54, and 7 non-metabelian groups of order 72. This completes the study of unit groups of semisimple group algebras for groups upto order 72.

On the structural theory of  II 1 factors of negatively curved groups

Ionut Chifan, Thomas Sinclair (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Ozawa showed in [21] that for any i.c.c. hyperbolic group, the associated group factor L Γ is solid. Developing a new approach that combines some methods of Peterson [29], Ozawa and Popa [27, 28], and Ozawa [25], we strengthen this result by showing that L Γ is strongly solid. Using our methods in cooperation with a cocycle superrigidity result of Ioana [12], we show that profinite actions of lattices in  Sp ( n , 1 ) , n 2 , are virtually W * -superrigid.

Characterization of the alternating groups by their order and one conjugacy class length

Alireza Khalili Asboei, Reza Mohammadyari (2016)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group, and let N ( G ) be the set of conjugacy class sizes of G . By Thompson’s conjecture, if L is a finite non-abelian simple group, G is a finite group with a trivial center, and N ( G ) = N ( L ) , then L and G are isomorphic. Recently, Chen et al. contributed interestingly to Thompson’s conjecture under a weak condition. They only used the group order and one or two special conjugacy class sizes of simple groups and characterized successfully sporadic simple groups (see Li’s PhD dissertation)....

Obstruction sets and extensions of groups

Francesca Balestrieri (2016)

Acta Arithmetica

Similarity:

Let X be a nice variety over a number field k. We characterise in pure “descent-type” terms some inequivalent obstruction sets refining the inclusion X ( k ) é t , B r X ( k ) B r . In the first part, we apply ideas from the proof of X ( k ) é t , B r = X ( k ) k by Skorobogatov and Demarche to new cases, by proving a comparison theorem for obstruction sets. In the second part, we show that if k are such that E x t ( , k ) , then X ( k ) = X ( k ) . This allows us to conclude, among other things, that X ( k ) é t , B r = X ( k ) k and X ( k ) S o l , B r = X ( k ) S o l k .