Displaying similar documents to “A nonlinear Poisson transform for Einstein metrics on product spaces”

Three dimensional near-horizon metrics that are Einstein-Weyl

Matthew Randall (2017)

Archivum Mathematicum

Similarity:

We investigate which three dimensional near-horizon metrics g N H admit a compatible 1-form X such that ( X , [ g N H ] ) defines an Einstein-Weyl structure. We find explicit examples and see that some of the solutions give rise to Einstein-Weyl structures of dispersionless KP type and dispersionless Hirota (aka hyperCR) type.

Computing the determinantal representations of hyperbolic forms

Mao-Ting Chien, Hiroshi Nakazato (2016)

Czechoslovak Mathematical Journal

Similarity:

The numerical range of an n × n matrix is determined by an n degree hyperbolic ternary form. Helton-Vinnikov confirmed conversely that an n degree hyperbolic ternary form admits a symmetric determinantal representation. We determine the types of Riemann theta functions appearing in the Helton-Vinnikov formula for the real symmetric determinantal representation of hyperbolic forms for the genus g = 1 . We reformulate the Fiedler-Helton-Vinnikov formulae for the genus g = 0 , 1 , and present an elementary...

Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures

Amalendu Ghosh (2016)

Mathematica Bohemica

Similarity:

We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures ( g , ± ω ) with constant scalar curvature is either Einstein, or the dual field of ω is Killing. Next, let ( M n , g ) be a complete and connected Riemannian manifold of dimension at least 3 admitting a pair of Einstein-Weyl structures ( g , ± ω ) . Then the Einstein-Weyl vector field E (dual to the 1 -form ω ) generates an infinitesimal harmonic transformation if and only if E is Killing.

Some Classes of Lorentzian α -Sasakian Manifolds Admitting a Quarter-symmetric Metric Connection

Santu DEY, Buddhadev Pal, Arindam BHATTACHARYYA (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

The object of the present paper is to study a quarter-symmetric metric connection in an Lorentzian α -Sasakian manifold. We study some curvature properties of an Lorentzian α -Sasakian manifold with respect to the quarter-symmetric metric connection. We study locally φ -symmetric, φ -symmetric, locally projective φ -symmetric, ξ -projectively flat Lorentzian α -Sasakian manifold with respect to the quarter-symmetric metric connection.

Which 3-manifold groups are Kähler groups?

Alexandru Dimca, Alexander Suciu (2009)

Journal of the European Mathematical Society

Similarity:

The question in the title, first raised by Goldman and Donaldson, was partially answered by Reznikov. We give a complete answer, as follows: if G can be realized as both the fundamental group of a closed 3-manifold and of a compact Kähler manifold, then G must be finite—and thus belongs to the well-known list of finite subgroups of O ( 4 ) , acting freely on S 3 .

Kähler-Einstein metrics with mixed Poincaré and cone singularities along a normal crossing divisor

Henri Guenancia (2014)

Annales de l’institut Fourier

Similarity:

Let X be a compact Kähler manifold and Δ be a -divisor with simple normal crossing support and coefficients between 1 / 2 and 1 . Assuming that K X + Δ is ample, we prove the existence and uniqueness of a negatively curved Kahler-Einstein metric on X Supp ( Δ ) having mixed Poincaré and cone singularities according to the coefficients of Δ . As an application we prove a vanishing theorem for certain holomorphic tensor fields attached to the pair ( X , Δ ) .

Deformations of Kähler manifolds with nonvanishing holomorphic vector fields

Jaume Amorós, Mònica Manjarín, Marcel Nicolau (2012)

Journal of the European Mathematical Society

Similarity:

We study compact Kähler manifolds X admitting nonvanishing holomorphic vector fields, extending the classical birational classification of projective varieties with tangent vector fields to a classification modulo deformation in the Kähler case, and biholomorphic in the projective case. We introduce and analyze a new class of 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 , and show that they form a smooth subspace in the Kuranishi space of deformations of the complex structure of X . We extend Calabi’s theorem on the structure of...

η -Ricci Solitons on η -Einstein ( L C S ) n -Manifolds

Shyamal Kumar Hui, Debabrata Chakraborty (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

The object of the present paper is to study η -Ricci solitons on η -Einstein ( L C S ) n -manifolds. It is shown that if ξ is a recurrent torse forming η -Ricci soliton on an η -Einstein ( L C S ) n -manifold then ξ is (i) concurrent and (ii) Killing vector field.

Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties

Robert J. Berman, Bo Berndtsson (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We show, using a direct variational approach, that the second boundary value problem for the Monge-Ampère equation in n with exponential non-linearity and target a convex body P is solvable iff 0 is the barycenter of P . Combined with some toric geometry this confirms, in particular, the (generalized) Yau-Tian-Donaldson conjecture for toric log Fano varieties ( X , Δ ) saying that ( X , Δ ) admits a (singular) Kähler-Einstein metric iff it is K-stable in the algebro-geometric sense. We thus obtain a new...

Approximately Einstein ACH metrics, volume renormalization, and an invariant for contact manifolds

Neil Seshadri (2009)

Bulletin de la Société Mathématique de France

Similarity:

To any smooth compact manifold M endowed with a contact structure H and partially integrable almost CR structure J , we prove the existence and uniqueness, modulo high-order error terms and diffeomorphism action, of an approximately Einstein ACH (asymptotically complex hyperbolic) metric g on M × ( - 1 , 0 ) . We consider the asymptotic expansion, in powers of a special defining function, of the volume of M × ( - 1 , 0 ) with respect to g and prove that the log term coefficient is independent of J (and any choice...

The Kähler Ricci flow on Fano manifolds (I)

Xiuxiong Chen, Bing Wang (2012)

Journal of the European Mathematical Society

Similarity:

We study the evolution of pluri-anticanonical line bundles K M - ν along the Kähler Ricci flow on a Fano manifold M . Under some special conditions, we show that the convergence of this flow is determined by the properties of the pluri-anticanonical divisors of M . For example, the Kähler Ricci flow on M converges when M is a Fano surface satisfying c 1 2 ( M ) = 1 or c 1 2 ( M ) = 3 . Combined with the works in [CW1] and [CW2], this gives a Ricci flow proof of the Calabi conjecture on Fano surfaces with reductive automorphism...

About the Calabi problem: a finite-dimensional approach

H.-D. Cao, J. Keller (2013)

Journal of the European Mathematical Society

Similarity:

Let us consider a projective manifold M n and a smooth volume form Ω on M . We define the gradient flow associated to the problem of Ω -balanced metrics in the quantum formalism, the Ω -balancing flow. At the limit of the quantization, we prove that (see Theorem 1) the Ω -balancing flow converges towards a natural flow in Kähler geometry, the Ω -Kähler flow. We also prove the long time existence of the Ω -Kähler flow and its convergence towards Yau’s solution to the Calabi conjecture of prescribing...

Global solutions to initial value problems in nonlinear hyperbolic thermoelasticity

Jerzy August Gawinecki

Similarity:

CONTENTS1. Introduction..................................................................................................................................... 5 1.1. Main Theorem 1.1................................................................................................................. 8 1.2. Main Theorem 1.2................................................................................................................. 92. Radon transform.......................................................................................................................................