Displaying similar documents to “On the higher mean over arithmetic progressions of Fourier coefficients of cusp forms”

The distribution of Fourier coefficients of cusp forms over sparse sequences

Huixue Lao, Ayyadurai Sankaranarayanan (2014)

Acta Arithmetica

Similarity:

Let λ f ( n ) be the nth normalized Fourier coefficient of a holomorphic Hecke eigenform f ( z ) S k ( Γ ) . We establish that n x λ f 2 ( n j ) = c j x + O ( x 1 - 2 / ( ( j + 1 ) 2 + 1 ) ) for j = 2,3,4, which improves the previous results. For j = 2, we even establish a better result.

A quadratic form with prime variables associated with Hecke eigenvalues of a cusp form

Guodong Hua (2022)

Czechoslovak Mathematical Journal

Similarity:

Let f be a normalized primitive holomorphic cusp form of even integral weight k for the full modular group SL ( 2 , ) , and denote its n th Fourier coefficient by λ f ( n ) . We consider the hybrid problem of quadratic forms with prime variables and Hecke eigenvalues of normalized primitive holomorphic cusp forms, which generalizes the result of D. Y. Zhang, Y. N. Wang (2017).

On a certain class of arithmetic functions

Antonio M. Oller-Marcén (2017)

Mathematica Bohemica

Similarity:

A homothetic arithmetic function of ratio K is a function f : R such that f ( K n ) = f ( n ) for every n . Periodic arithmetic funtions are always homothetic, while the converse is not true in general. In this paper we study homothetic and periodic arithmetic functions. In particular we give an upper bound for the number of elements of f ( ) in terms of the period and the ratio of f .

Numerical characterization of nef arithmetic divisors on arithmetic surfaces

Atsushi Moriwaki (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

In this paper, we give a numerical characterization of nef arithmetic -Cartier divisors of C 0 -type on an arithmetic surface. Namely an arithmetic -Cartier divisor D ¯ of C 0 -type is nef if and only if D ¯ is pseudo-effective and deg ^ ( D ¯ 2 ) = vol ^ ( D ¯ ) .

Aposyndesis in

José del Carmen Alberto-Domínguez, Gerardo Acosta, Maira Madriz-Mendoza (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We consider the Golomb and the Kirch topologies in the set of natural numbers. Among other results, we show that while with the Kirch topology every arithmetic progression is aposyndetic, in the Golomb topology only for those arithmetic progressions P ( a , b ) with the property that every prime number that divides a also divides b , it follows that being connected, being Brown, being totally Brown, and being aposyndetic are all equivalent. This characterizes the arithmetic progressions which are...

On the higher power moments of cusp form coefficients over sums of two squares

Guodong Hua (2022)

Czechoslovak Mathematical Journal

Similarity:

Let f be a normalized primitive holomorphic cusp form of even integral weight for the full modular group Γ = SL ( 2 , ) . Denote by λ f ( n ) the n th normalized Fourier coefficient of f . We are interested in the average behaviour of the sum a 2 + b 2 x λ f j ( a 2 + b 2 ) for x 1 , where a , b and j 9 is any fixed positive integer. In a similar manner, we also establish analogous results for the normalized coefficients of Dirichlet expansions of associated symmetric power L -functions and Rankin-Selberg L -functions.

A transplantation theorem for ultraspherical polynomials at critical index

J. J. Guadalupe, V. I. Kolyada (2001)

Studia Mathematica

Similarity:

We investigate the behaviour of Fourier coefficients with respect to the system of ultraspherical polynomials. This leads us to the study of the “boundary” Lorentz space λ corresponding to the left endpoint of the mean convergence interval. The ultraspherical coefficients c ( λ ) ( f ) of λ -functions turn out to behave like the Fourier coefficients of functions in the real Hardy space ReH¹. Namely, we prove that for any f λ the series n = 1 c ( λ ) ( f ) c o s n θ is the Fourier series of some function φ ∈ ReH¹ with | | φ | | R e H ¹ c | | f | | λ . ...

The Fourier transform in Lebesgue spaces

Erik Talvila (2025)

Czechoslovak Mathematical Journal

Similarity:

For each f L p ( ) ( 1 p < ) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each p , a norm is defined so that the space of Fourier transforms is isometrically isomorphic to L p ( ) . There is an exchange theorem and inversion in norm.

The equidistribution of Fourier coefficients of half integral weight modular forms on the plane

Soufiane Mezroui (2020)

Czechoslovak Mathematical Journal

Similarity:

Let f = n = 1 a ( n ) q n S k + 1 / 2 ( N , χ 0 ) be a nonzero cuspidal Hecke eigenform of weight k + 1 2 and the trivial nebentypus χ 0 , where the Fourier coefficients a ( n ) are real. Bruinier and Kohnen conjectured that the signs of a ( n ) are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies { a ( t n 2 ) } n , where t is a squarefree integer such that a ( t ) 0 . Let q and d be natural numbers such that ( d , q ) = 1 . In this work, we show that { a ( t n 2 ) } n is equidistributed over any arithmetic progression n d mod q .

On the order of magnitude of Walsh-Fourier transform

Bhikha Lila Ghodadra, Vanda Fülöp (2020)

Mathematica Bohemica

Similarity:

For a Lebesgue integrable complex-valued function f defined on + : = [ 0 , ) let f ^ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f ^ ( y ) 0 as y . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of L 1 ( + ) there is a definite rate at which the Walsh-Fourier transform tends...

On generalized square-full numbers in an arithmetic progression

Angkana Sripayap, Pattira Ruengsinsub, Teerapat Srichan (2022)

Czechoslovak Mathematical Journal

Similarity:

Let a and b . Denote by R a , b the set of all integers n > 1 whose canonical prime representation n = p 1 α 1 p 2 α 2 p r α r has all exponents α i ( 1 i r ) being a multiple of a or belonging to the arithmetic progression a t + b , t 0 : = { 0 } . All integers in R a , b are called generalized square-full integers. Using the exponent pair method, an upper bound for character sums over generalized square-full integers is derived. An application on the distribution of generalized square-full integers in an arithmetic progression is given. ...

On arithmetic progressions on Edwards curves

Enrique González-Jiménez (2015)

Acta Arithmetica

Similarity:

Let m > 0 and a,q ∈ ℚ. Denote by m ( a , q ) the set of rational numbers d such that a, a + q, ..., a + (m-1)q form an arithmetic progression in the Edwards curve E d : x ² + y ² = 1 + d x ² y ² . We study the set m ( a , q ) and we parametrize it by the rational points of an algebraic curve.

Hybrid sup-norm bounds for Hecke–Maass cusp forms

Nicolas Templier (2015)

Journal of the European Mathematical Society

Similarity:

Let f be a Hecke–Maass cusp form of eigenvalue λ and square-free level N . Normalize the hyperbolic measure such that vol ( Y 0 ( N ) ) = 1 and the form f such that f 2 = 1 . It is shown that f ϵ λ 5 24 + ϵ N 1 3 + ϵ for all ϵ > 0 . This generalizes simultaneously the current best bounds in the eigenvalue and level aspects.

A structure theorem for sets of small popular doubling

Przemysław Mazur (2015)

Acta Arithmetica

Similarity:

We prove that every set A ⊂ ℤ satisfying x m i n ( 1 A * 1 A ( x ) , t ) ( 2 + δ ) t | A | for t and δ in suitable ranges must be very close to an arithmetic progression. We use this result to improve the estimates of Green and Morris for the probability that a random subset A ⊂ ℕ satisfies |ℕ∖(A+A)| ≥ k; specifically, we show that ( | ( A + A ) | k ) = Θ ( 2 - k / 2 ) .