Displaying similar documents to “Existence of three solutions to a double eigenvalue problem for the p-biharmonic equation”

Existence of three solutions for a class of (p₁,...,pₙ)-biharmonic systems with Navier boundary conditions

Shapour Heidarkhani, Yu Tian, Chun-Lei Tang (2012)

Annales Polonici Mathematici

Similarity:

We establish the existence of at least three weak solutions for the (p1,…,pₙ)-biharmonic system ⎧ Δ ( | Δ u i | p 2 Δ u i ) = λ F u i ( x , u , , u ) in Ω, ⎨ ⎩ u i = Δ u i = 0 on ∂Ω, for 1 ≤ i ≤ n. The proof is based on a recent three critical points theorem.

A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three

Huanyuan Li (2021)

Applications of Mathematics

Similarity:

This paper proves a Serrin’s type blow-up criterion for the 3D density-dependent Navier-Stokes-Korteweg equations with vacuum. It is shown that if the density ρ and velocity field u satisfy ρ L ( 0 , T ; W 1 , q ) + u L s ( 0 , T ; L ω r ) < for some q > 3 and any ( r , s ) satisfying 2 / s + 3 / r 1 , 3 < r , then the strong solutions to the density-dependent Navier-Stokes-Korteweg equations can exist globally over [ 0 , T ] . Here L ω r denotes the weak L r space.

On the existence of steady-state solutions to the Navier-Stokes system for large fluxes

Antonio Russo, Giulio Starita (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

In this paper we deal with the stationary Navier-Stokes problem in a domain Ω with compact Lipschitz boundary Ω and datum a in Lebesgue spaces. We prove existence of a solution for arbitrary values of the fluxes through the connected components of Ω , with possible countable exceptional set, provided a is the sum of the gradient of a harmonic function and a sufficiently small field, with zero total flux for Ω bounded.

Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production

Lu Yang, Xi Liu, Zhibo Hou (2023)

Czechoslovak Mathematical Journal

Similarity:

We consider the Keller-Segel-Navier-Stokes system n t + 𝐮 · n = Δ n - · ( n v ) , x Ω , t > 0 , v t + 𝐮 · v = Δ v - v + w , x Ω , t > 0 , w t + 𝐮 · w = Δ w - w + n , x Ω , t > 0 , 𝐮 t + ( 𝐮 · ) 𝐮 = Δ 𝐮 + P + n φ , · 𝐮 = 0 , x Ω , t > 0 , which is considered in bounded domain Ω N ( N { 2 , 3 } ) with smooth boundary, where φ C 1 + δ ( Ω ¯ ) with δ ( 0 , 1 ) . We show that if the initial data n 0 L N / 2 ( Ω ) , v 0 L N ( Ω ) , w 0 L N ( Ω ) and 𝐮 0 L N ( Ω ) is small enough, an associated initial-boundary value problem possesses a global classical solution which decays to the constant state ( n ¯ 0 , n ¯ 0 , n ¯ 0 , 0 ) exponentially with n ¯ 0 : = ( 1 / | Ω | ) Ω n 0 ( x ) d x .

A short note on L q theory for Stokes problem with a pressure-dependent viscosity

Václav Mácha (2016)

Czechoslovak Mathematical Journal

Similarity:

We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on p and on the symmetric part of a gradient of u , namely, it is represented by a stress tensor T ( D u , p ) : = ν ( p , | D | 2 ) D which satisfies r -growth condition with r ( 1 , 2 ] . In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for...

Existence of a positive ground state solution for a Kirchhoff type problem involving a critical exponent

Lan Zeng, Chun Lei Tang (2016)

Annales Polonici Mathematici

Similarity:

We consider the following Kirchhoff type problem involving a critical nonlinearity: ⎧ - [ a + b ( Ω | u | ² d x ) m ] Δ u = f ( x , u ) + | u | 2 * - 2 u in Ω, ⎨ ⎩ u = 0 on ∂Ω, where Ω N (N ≥ 3) is a smooth bounded domain with smooth boundary ∂Ω, a > 0, b ≥ 0, and 0 < m < 2/(N-2). Under appropriate assumptions on f, we show the existence of a positive ground state solution via the variational method.

On the existence of solutions for the nonstationary Stokes system with slip boundary conditions in general Sobolev-Slobodetskii and Besov spaces

Wisam Alame (2005)

Banach Center Publications

Similarity:

We prove the existence of solutions to the evolutionary Stokes system in a bounded domain Ω ⊂ ℝ³. The main result shows that the velocity belongs either to W p 2 s + 2 , s + 1 ( Ω T ) or to B p , q 2 s + 2 , s + 1 ( Ω T ) with p > 3 and s ∈ ℝ₊ ∪ 0. The proof is divided into two steps. First the existence in W p 2 k + 2 , k + 1 for k ∈ ℕ is proved. Next applying interpolation theory the existence in Besov spaces in a half space is shown. Finally the technique of regularizers implies the existence in a bounded domain. The result is generalized to the spaces...

The maximum regularity property of the steady Stokes problem associated with a flow through a profile cascade in L r -framework

Tomáš Neustupa (2023)

Applications of Mathematics

Similarity:

We deal with the steady Stokes problem, associated with a flow of a viscous incompressible fluid through a spatially periodic profile cascade. Using the reduction to domain Ω , which represents one spatial period, the problem is formulated by means of boundary conditions of three types: the conditions of periodicity on curves Γ - and Γ + (lower and upper parts of Ω ), the Dirichlet boundary conditions on Γ in (the inflow) and Γ 0 (boundary of the profile) and an artificial “do nothing”-type boundary...

Profile decomposition for solutions of the Navier-Stokes equations

Isabelle Gallagher (2001)

Bulletin de la Société Mathématique de France

Similarity:

We consider sequences of solutions of the Navier-Stokes equations in  3 , associated with sequences of initial data bounded in  H ˙ 1 / 2 . We prove, in the spirit of the work of H.Bahouri and P.Gérard (in the case of the wave equation), that they can be decomposed into a sum of orthogonal profiles, bounded in  H ˙ 1 / 2 , up to a remainder term small in  L 3 ; the method is based on the proof of a similar result for the heat equation, followed by a perturbation–type argument. If  𝒜 is an “admissible” space (in...

The internal stabilization by noise of the linearized Navier-Stokes equation

Viorel Barbu (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

One shows that the linearized Navier-Stokes equation in 𝒪 R d , d 2 , around an unstable equilibrium solution is exponentially stabilizable in probability by an internal noise controller V ( t , ξ ) = i = 1 N V i ( t ) ψ i ( ξ ) β ˙ i ( t ) , ξ 𝒪 , where { β i } i = 1 N are independent Brownian motions in a probability space and { ψ i } i = 1 N is a system of functions on 𝒪 with support in an arbitrary open subset 𝒪 0 𝒪 . The stochastic control input { V i } i = 1 N is found in feedback form. One constructs also a tangential boundary noise controller which exponentially stabilizes in probability...

Fourth-order nonlinear elliptic equations with critical growth

David E. Edmunds, Donato Fortunato, Enrico Jannelli (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

In this paper we consider a nonlinear elliptic equation with critical growth for the operator Δ 2 in a bounded domain Ω n . We state some existence results when n 8 . Moreover, we consider 5 n 7 , expecially when Ω is a ball in n .

Bubbling along boundary geodesics near the second critical exponent

Manuel del Pino, Monica Musso, Frank Pacard (2010)

Journal of the European Mathematical Society

Similarity:

The role of the second critical exponent p = ( n + 1 ) / ( n - 3 ) , the Sobolev critical exponent in one dimension less, is investigated for the classical Lane–Emden–Fowler problem Δ u + u p = 0 , u > 0 under zero Dirichlet boundary conditions, in a domain Ω in n with bounded, smooth boundary. Given Γ , a geodesic of the boundary with negative inner normal curvature we find that for p = ( n + 1 ) / ( n - 3 - ε ) , there exists a solution u ε such that | u ε | 2 converges weakly to a Dirac measure on Γ as ε 0 + , provided that Γ is nondegenerate in the sense of second...

An L q ( L ² ) -theory of the generalized Stokes resolvent system in infinite cylinders

Reinhard Farwig, Myong-Hwan Ri (2007)

Studia Mathematica

Similarity:

Estimates of the generalized Stokes resolvent system, i.e. with prescribed divergence, in an infinite cylinder Ω = Σ × ℝ with Σ n - 1 , a bounded domain of class C 1 , 1 , are obtained in the space L q ( ; L ² ( Σ ) ) , q ∈ (1,∞). As a preparation, spectral decompositions of vector-valued homogeneous Sobolev spaces are studied. The main theorem is proved using the techniques of Schauder decompositions, operator-valued multiplier functions and R-boundedness of operator families.

Critical points of the Moser-Trudinger functional on a disk

Andrea Malchiodi, Luca Martinazzi (2014)

Journal of the European Mathematical Society

Similarity:

On the unit disk B 1 2 we study the Moser-Trudinger functional E ( u ) = B 1 e u 2 - 1 d x , u H 0 1 ( B 1 ) and its restrictions E | M Λ , where M Λ : = { u H 0 1 ( B 1 ) : u H 0 1 2 = Λ } for Λ > 0 . We prove that if a sequence u k of positive critical points of E | M Λ k (for some Λ k > 0 ) blows up as k , then Λ k 4 π , and u k 0 weakly in H 0 1 ( B 1 ) and strongly in C loc 1 ( B ¯ 1 { 0 } ) . Using this fact we also prove that when Λ is large enough, then E | M Λ has no positive critical point, complementing previous existence results by Carleson-Chang, M. Struwe and Lamm-Robert-Struwe.

Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity

Djairo Guedes de Figueiredo, Jean-Pierre Gossez, Pedro Ubilla (2006)

Journal of the European Mathematical Society

Similarity:

We study the existence, nonexistence and multiplicity of positive solutions for the family of problems Δ u = f λ ( x , u ) , u H 0 1 ( Ω ) , where Ω is a bounded domain in N , N 3 and λ > 0 is a parameter. The results include the well-known nonlinearities of the Ambrosetti–Brezis–Cerami type in a more general form, namely λ a ( x ) u q + b ( x ) u p , where 0 q < 1 < p 2 * 1 . The coefficient a ( x ) is assumed to be nonnegative but b ( x ) is allowed to change sign, even in the critical case. The notions of local superlinearity and local sublinearity introduced in [9] are essential...

On a class of ( p , q ) -Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain

M.S. Shahrokhi-Dehkordi (2017)

Communications in Mathematics

Similarity:

Let Ω n be a bounded starshaped domain and consider the ( p , q ) -Laplacian problem - Δ p u - Δ q u = λ ( 𝐱 ) | u | p - 2 u + μ | u | r - 2 u where μ is a positive parameter, 1 < q p < n , r p and p : = n p n - p is the critical Sobolev exponent. In this short note we address the question of non-existence for non-trivial solutions to the ( p , q ) -Laplacian problem. In particular we show the non-existence of non-trivial solutions to the problem by using a method based on Pohozaev identity.

Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential

Jaeyoung Byeon, Kazunaga Tanaka (2013)

Journal of the European Mathematical Society

Similarity:

We consider a singularly perturbed elliptic equation ϵ 2 Δ u - V ( x ) u + f ( u ) = 0 , u ( x ) > 0 on N , 𝚕𝚒𝚖 x u ( x ) = 0 , where V ( x ) > 0 for any x N . The singularly perturbed problem has corresponding limiting problems Δ U - c U + f ( U ) = 0 , U ( x ) > 0 on N , 𝚕𝚒𝚖 x U ( x ) = 0 , c > 0 . Berestycki-Lions found almost necessary and sufficient conditions on nonlinearity f for existence of a solution of the limiting problem. There have been endeavors to construct solutions of the singularly perturbed problem concentrating around structurally stable critical points of potential V under possibly general conditions...

Perturbed nonlinear degenerate problems in N

A. El Khalil, S. El Manouni, M. Ouanan (2009)

Applicationes Mathematicae

Similarity:

Via critical point theory we establish the existence and regularity of solutions for the quasilinear elliptic problem ⎧ d i v ( x , u ) + a ( x ) | u | p - 2 u = g ( x ) | u | p - 2 u + h ( x ) | u | s - 1 u in N ⎨ ⎩ u > 0, l i m | x | u ( x ) = 0 , where 1 < p < N; a(x) is assumed to satisfy a coercivity condition; h(x) and g(x) are not necessarily bounded but satisfy some integrability restrictions.

Asymptotic properties of ground states of scalar field equations with a vanishing parameter

Vitaly Moroz, Cyrill B. Muratov (2014)

Journal of the European Mathematical Society

Similarity:

We study the leading order behaviour of positive solutions of the equation - Δ u + ϵ u - | u | p - 2 u + | u | q - 2 u = 0 , x N , where N 3 , q > p > 2 and when ϵ > 0 is a small parameter. We give a complete characterization of all possible asymptotic regimes as a function of p , q and N . The behavior of solutions depends sensitively on whether p is less, equal or bigger than the critical Sobolev exponent 2 * = 2 N N - 2 . For p < 2 * the solution asymptotically coincides with the solution of the equation in which the last term is absent. For p > 2 * the solution asymptotically...

Linking and the Morse complex

Michael Usher (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

For a Morse function f on a compact oriented manifold M , we show that f has more critical points than the number required by the Morse inequalities if and only if there exists a certain class of link in M whose components have nontrivial linking number, such that the minimal value of f on one of the components is larger than its maximal value on the other. Indeed we characterize the precise number of critical points of f in terms of the Betti numbers of M and the behavior of f with respect...

Fourth-order nonlinear elliptic equations with critical growth

David E. Edmunds, Donato Fortunato, Enrico Jannelli (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

In this paper we consider a nonlinear elliptic equation with critical growth for the operator Δ 2 in a bounded domain Ω n . We state some existence results when n 8 . Moreover, we consider 5 n 7 , expecially when Ω is a ball in n .

Remarks on regularity criteria for the Navier-Stokes equations with axisymmetric data

Zujin Zhang (2016)

Annales Polonici Mathematici

Similarity:

We consider the axisymmetric Navier-Stokes equations with non-zero swirl component. By invoking the Hardy-Sobolev interpolation inequality, Hardy inequality and the theory of * A β (1 < β < ∞) weights, we establish regularity criteria involving u r , ω z or ω θ in some weighted Lebesgue spaces. This improves many previous results.