Displaying similar documents to “Complete pluripolar graphs in N

J -holomorphic discs and real analytic hypersurfaces

William Alexandre, Emmanuel Mazzilli (2014)

Annales de l’institut Fourier

Similarity:

We give in 6 a real analytic almost complex structure J , a real analytic hypersurface M and a vector v in the Levi null set at 0 of M , such that there is no germ of J -holomorphic disc γ included in M with γ ( 0 ) = 0 and γ x ( 0 ) = v , although the Levi form of M has constant rank. Then for any hypersurface M and any complex structure J , we give sufficient conditions under which there exists such a germ of disc.

Spaces of geometrically generic configurations

Yoel Feler (2008)

Journal of the European Mathematical Society

Similarity:

Let X denote either ℂℙ m or m . We study certain analytic properties of the space n ( X , g p ) of ordered geometrically generic n -point configurations in X . This space consists of all q = ( q 1 , , q n ) X n such that no m + 1 of the points q 1 , , q n belong to a hyperplane in X . In particular, we show that for a big enough n any holomorphic map f : n ( ℂℙ m , g p ) n ( ℂℙ m , g p ) commuting with the natural action of the symmetric group 𝐒 ( n ) in n ( ℂℙ m , g p ) is of the form f ( q ) = τ ( q ) q = ( τ ( q ) q 1 , , τ ( q ) q n ) , q n ( ℂℙ m , g p ) , where τ : n ( ℂℙ m , g p ) 𝐏𝐒𝐋 ( m + 1 , ) is an 𝐒 ( n ) -invariant holomorphic map. A similar result holds true for mappings of the configuration...

Pluriharmonic extension in proper image domains

Rafał Czyż (2009)

Annales Polonici Mathematici

Similarity:

Let D j be a bounded hyperconvex domain in n j and set D = D × × D s , j=1,...,s, s ≥ 3. Also let Ω π be the image of D under the proper holomorphic map π. We characterize those continuous functions f : Ω π that can be extended to a real-valued pluriharmonic function in Ω π .

Holomorphic line bundles and divisors on a domain of a Stein manifold

Makoto Abe (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Let D be an open set of a Stein manifold X of dimension n such that H k ( D , 𝒪 ) = 0 for 2 k n - 1 . We prove that D is Stein if and only if every topologically trivial holomorphic line bundle L on D is associated to some Cartier divisor 𝔡 on D .

Approximation of sets defined by polynomials with holomorphic coefficients

Marcin Bilski (2012)

Annales Polonici Mathematici

Similarity:

Let X be an analytic set defined by polynomials whose coefficients a , . . . , a s are holomorphic functions. We formulate conditions on sequences a 1 , ν , . . . , a s , ν of holomorphic functions converging locally uniformly to a , . . . , a s , respectively, such that the sequence X ν of sets obtained by replacing a j ’s by a j , ν ’s in the polynomials converges to X.

Edit distance measure for graphs

Tomasz Dzido, Krzysztof Krzywdziński (2015)

Czechoslovak Mathematical Journal

Similarity:

In this paper, we investigate a measure of similarity of graphs similar to the Ramsey number. We present values and bounds for g ( n , l ) , the biggest number k guaranteeing that there exist l graphs on n vertices, each two having edit distance at least k . By edit distance of two graphs G , F we mean the number of edges needed to be added to or deleted from graph G to obtain graph F . This new extremal number g ( n , l ) is closely linked to the edit distance of graphs. Using probabilistic methods we show...

Embedding products of graphs into Euclidean spaces

Mikhail Skopenkov (2003)

Fundamenta Mathematicae

Similarity:

For any collection of graphs G , . . . , G N we find the minimal dimension d such that the product G × . . . × G N is embeddable into d (see Theorem 1 below). In particular, we prove that (K₅)ⁿ and ( K 3 , 3 ) are not embeddable into 2 n , where K₅ and K 3 , 3 are the Kuratowski graphs. This is a solution of a problem of Menger from 1929. The idea of the proof is a reduction to a problem from so-called Ramsey link theory: we show that any embedding L k O S 2 n - 1 , where O is a vertex of (K₅)ⁿ, has a pair of linked (n-1)-spheres.

Equidistribution towards the Green current for holomorphic maps

Tien-Cuong Dinh, Nessim Sibony (2008)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let f be a non-invertible holomorphic endomorphism of a projective space and f n its iterate of order n . We prove that the pull-back by f n of a generic (in the Zariski sense) hypersurface, properly normalized, converges to the Green current associated to f when n tends to infinity. We also give an analogous result for the pull-back of positive closed ( 1 , 1 ) -currents and a similar result for regular polynomial automorphisms of  k .

A pure smoothness condition for Radó’s theorem for α -analytic functions

Abtin Daghighi, Frank Wikström (2016)

Czechoslovak Mathematical Journal

Similarity:

Let Ω n be a bounded, simply connected -convex domain. Let α + n and let f be a function on Ω which is separately C 2 α j - 1 -smooth with respect to z j (by which we mean jointly C 2 α j - 1 -smooth with respect to Re z j , Im z j ). If f is α -analytic on Ω f - 1 ( 0 ) , then f is α -analytic on Ω . The result is well-known for the case α i = 1 , 1 i n , even when f a priori is only known to be continuous.

Steinness of bundles with fiber a Reinhardt bounded domain

Karl Oeljeklaus, Dan Zaffran (2006)

Bulletin de la Société Mathématique de France

Similarity:

Let E denote a holomorphic bundle with fiber D and with basis B . Both D and B are assumed to be Stein. For D a Reinhardt bounded domain of dimension d = 2 or 3 , we give a necessary and sufficient condition on D for the existence of a non-Stein such E (Theorem 1 ); for d = 2 , we give necessary and sufficient criteria for E to be Stein (Theorem 2 ). For D a Reinhardt bounded domain of any dimension not intersecting any coordinate hyperplane, we give a sufficient criterion for E to be Stein (Theorem...

Intrinsic linking and knotting are arbitrarily complex

Erica Flapan, Blake Mellor, Ramin Naimi (2008)

Fundamenta Mathematicae

Similarity:

We show that, given any n and α, any embedding of any sufficiently large complete graph in ℝ³ contains an oriented link with components Q₁, ..., Qₙ such that for every i ≠ j, | l k ( Q i , Q j ) | α and | a ( Q i ) | α , where a ( Q i ) denotes the second coefficient of the Conway polynomial of Q i .

Note on improper coloring of 1 -planar graphs

Yanan Chu, Lei Sun, Jun Yue (2019)

Czechoslovak Mathematical Journal

Similarity:

A graph G = ( V , E ) is called improperly ( d 1 , , d k ) -colorable if the vertex set V can be partitioned into subsets V 1 , , V k such that the graph G [ V i ] induced by the vertices of V i has maximum degree at most d i for all 1 i k . In this paper, we mainly study the improper coloring of 1 -planar graphs and show that 1 -planar graphs with girth at least 7 are ( 2 , 0 , 0 , 0 ) -colorable.

Equidistribution towards the Green current

Vincent Guedj (2003)

Bulletin de la Société Mathématique de France

Similarity:

Let f : k k be a dominating rational mapping of first algebraic degree λ 2 . If S is a positive closed current of bidegree ( 1 , 1 ) on k with zero Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks λ - n ( f n ) * S converge to the Green current T f . For some families of mappings, we get finer convergence results which allow us to characterize all f * -invariant currents.

Foliated structure of the Kuranishi space and isomorphisms of deformation families of compact complex manifolds

Laurent Meersseman (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Consider the following uniformization problem. Take two holomorphic (parametrized by some analytic set defined on a neighborhood of 0 in p , for some p > 0 ) or differentiable (parametrized by an open neighborhood of 0 in p , for some p > 0 ) deformation families of compact complex manifolds. Assume they are pointwise isomorphic, that is for each point t of the parameter space, the fiber over t of the first family is biholomorphic to the fiber over t of the second family. Then, under which conditions...

Grauert's line bundle convexity, reduction and Riemann domains

Viorel Vâjâitu (2016)

Czechoslovak Mathematical Journal

Similarity:

We consider a convexity notion for complex spaces X with respect to a holomorphic line bundle L over X . This definition has been introduced by Grauert and, when L is analytically trivial, we recover the standard holomorphic convexity. In this circle of ideas, we prove the counterpart of the classical Remmert’s reduction result for holomorphically convex spaces. In the same vein, we show that if H 0 ( X , L ) separates each point of X , then X can be realized as a Riemann domain over the complex projective...