The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Weak-type inequalities for maximal operators acting on Lorentz spaces”

Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces

Kristóf Szarvas, Ferenc Weisz (2016)

Czechoslovak Mathematical Journal

Similarity:

The classical Hardy-Littlewood maximal operator is bounded not only on the classical Lebesgue spaces L p ( d ) (in the case p > 1 ), but (in the case when 1 / p ( · ) is log-Hölder continuous and p - = inf { p ( x ) : x d } > 1 ) on the variable Lebesgue spaces L p ( · ) ( d ) , too. Furthermore, the classical Hardy-Littlewood maximal operator is of weak-type ( 1 , 1 ) . In the present note we generalize Besicovitch’s covering theorem for the so-called γ -rectangles. We introduce a general maximal operator M s γ , δ and with the help of generalized Φ -functions, the strong-...

Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions

Fabio Berra (2022)

Czechoslovak Mathematical Journal

Similarity:

We give a quantitative characterization of the pairs of weights ( w , v ) for which the dyadic version of the one-sided Hardy-Littlewood maximal operator satisfies a restricted weak ( p , p ) type inequality for 1 p < . More precisely, given any measurable set E 0 , the estimate w ( { x n : M + , d ( 𝒳 E 0 ) ( x ) > t } ) C [ ( w , v ) ] A p + , d ( ) p t p v ( E 0 ) holds if and only if the pair ( w , v ) belongs to A p + , d ( ) , that is, | E | | Q | [ ( w , v ) ] A p + , d ( ) v ( E ) w ( Q ) 1 / p for every dyadic cube Q and every measurable set E Q + . The proof follows some ideas appearing in S. Ombrosi (2005). We also obtain a similar quantitative characterization for the...

Local integrability of strong and iterated maximal functions

Paul Alton Hagelstein (2001)

Studia Mathematica

Similarity:

Let M S denote the strong maximal operator. Let M x and M y denote the one-dimensional Hardy-Littlewood maximal operators in the horizontal and vertical directions in ℝ². A function h supported on the unit square Q = [0,1]×[0,1] is exhibited such that Q M y M x h < but Q M x M y h = . It is shown that if f is a function supported on Q such that Q M y M x f < but Q M x M y f = , then there exists a set A of finite measure in ℝ² such that A M S f = .

The weak type inequality for the Walsh system

Ushangi Goginava (2008)

Studia Mathematica

Similarity:

The main aim of this paper is to prove that the maximal operator σ is bounded from the Hardy space H 1 / 2 to weak- L 1 / 2 and is not bounded from H 1 / 2 to L 1 / 2 .

Maximal non λ -subrings

Rahul Kumar, Atul Gaur (2020)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring with unity. The notion of maximal non λ -subrings is introduced and studied. A ring R is called a maximal non λ -subring of a ring T if R T is not a λ -extension, and for any ring S such that R S T , S T is a λ -extension. We show that a maximal non λ -subring R of a field has at most two maximal ideals, and exactly two if R is integrally closed in the given field. A determination of when the classical D + M construction is a maximal non λ -domain is given. A necessary condition...

Maximal non-pseudovaluation subrings of an integral domain

Rahul Kumar (2024)

Czechoslovak Mathematical Journal

Similarity:

The notion of maximal non-pseudovaluation subring of an integral domain is introduced and studied. Let R S be an extension of domains. Then R is called a maximal non-pseudovaluation subring of S if R is not a pseudovaluation subring of S , and for any ring T such that R T S , T is a pseudovaluation subring of S . We show that if S is not local, then there no such T exists between R and S . We also characterize maximal non-pseudovaluation subrings of a local integral domain.

Transference of weak type bounds of multiparameter ergodic and geometric maximal operators

Paul Hagelstein, Alexander Stokolos (2012)

Fundamenta Mathematicae

Similarity:

Let U , . . . , U d be a non-periodic collection of commuting measure preserving transformations on a probability space (Ω,Σ,μ). Also let Γ be a nonempty subset of d and the associated collection of rectangular parallelepipeds in d with sides parallel to the axes and dimensions of the form n × × n d with ( n , . . . , n d ) Γ . The associated multiparameter geometric and ergodic maximal operators M and M Γ are defined respectively on L ¹ ( d ) and L¹(Ω) by M g ( x ) = s u p x R 1 / | R | R | g ( y ) | d y and M Γ f ( ω ) = s u p ( n , . . . , n d ) Γ 1 / n n d j = 0 n - 1 j d = 0 n d - 1 | f ( U j U d j d ω ) | . Given a Young function Φ, it is shown that M satisfies the weak type estimate ...

Certain simple maximal subfields in division rings

Mehdi Aaghabali, Mai Hoang Bien (2019)

Czechoslovak Mathematical Journal

Similarity:

Let D be a division ring finite dimensional over its center F . The goal of this paper is to prove that for any positive integer n there exists a D ( n ) , the n th multiplicative derived subgroup such that F ( a ) is a maximal subfield of D . We also show that a single depth- n iterated additive commutator would generate a maximal subfield of D .

Some weighted norm inequalities for a one-sided version of g * λ

L. de Rosa, C. Segovia (2006)

Studia Mathematica

Similarity:

We study the boundedness of the one-sided operator g λ , φ between the weighted spaces L p ( M ¯ w ) and L p ( w ) for every weight w. If λ = 2/p whenever 1 < p < 2, and in the case p = 1 for λ > 2, we prove the weak type of g λ , φ . For every λ > 1 and p = 2, or λ > 2/p and 1 < p < 2, the boundedness of this operator is obtained. For p > 2 and λ > 1, we obtain the boundedness of g λ , φ from L p ( ( M ¯ ) [ p / 2 ] + 1 w ) to L p ( w ) , where ( M ¯ ) k denotes the operator M¯ iterated k times.

The subspace of weak P -points of *

Salvador García-Ferreira, Y. F. Ortiz-Castillo (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let W be the subspace of * consisting of all weak P -points. It is not hard to see that W is a pseudocompact space. In this paper we shall prove that this space has stronger pseudocompact properties. Indeed, it is shown that W is a p -pseudocompact space for all p * .

Radial maximal function characterizations for Hardy spaces on RD-spaces

Loukas Grafakos, Liguang Liu, Dachun Yang (2009)

Bulletin de la Société Mathématique de France

Similarity:

An RD-space 𝒳 is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. The authors prove that for a space of homogeneous type 𝒳 having “dimension” n , there exists a p 0 ( n / ( n + 1 ) , 1 ) such that for certain classes of distributions, the L p ( 𝒳 ) quasi-norms of their radial maximal functions and grand maximal functions are equivalent when p ( p 0 , ] . This result yields a radial maximal function characterization for Hardy spaces on 𝒳 . ...

Sums of commuting operators with maximal regularity

Christian Le Merdy, Arnaud Simard (2001)

Studia Mathematica

Similarity:

Let Y be a Banach space and let S L p be a subspace of an L p space, for some p ∈ (1,∞). We consider two operators B and C acting on S and Y respectively and satisfying the so-called maximal regularity property. Let ℬ and be their natural extensions to S ( Y ) L p ( Y ) . We investigate conditions that imply that ℬ + is closed and has the maximal regularity property. Extending theorems of Lamberton and Weis, we show in particular that this holds if Y is a UMD Banach lattice and e - t B is a positive contraction...

On butterfly-points in β X , Tychonoff products and weak Lindelöf numbers

Sergei Logunov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be the Tychonoff product α < τ X α of τ -many Tychonoff non-single point spaces X α . Let p X * be a point in the closure of some G X whose weak Lindelöf number is strictly less than the cofinality of τ . Then we show that β X { p } is not normal. Under some additional assumptions, p is a butterfly-point in β X . In particular, this is true if either X = ω τ or X = R τ and τ is infinite and not countably cofinal.

Relative weak derived functors

Panneerselvam Prabakaran (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let R be a ring, n a fixed non-negative integer, 𝒲 the class of all left R -modules with weak injective dimension at most n , and 𝒲 the class of all right R -modules with weak flat dimension at most n . Using left (right) 𝒲 -resolutions and the left derived functors of Hom we study the weak injective dimensions of modules and rings. Also we prove that - - is right balanced on R × R by 𝒲 × 𝒲 , and investigate the global right 𝒲 -dimension of R by right derived functors of .

A radial estimate for the maximal operator associated with the free Schrödinger equation

Sichun Wang (2006)

Studia Mathematica

Similarity:

Let d > 0 be a positive real number and n ≥ 1 a positive integer and define the operator S d and its associated global maximal operator S * * d by ( S d f ) ( x , t ) = 1 / ( 2 π ) e i x · ξ e i t | ξ | d f ̂ ( ξ ) d ξ , f ∈ (ℝⁿ), x ∈ ℝⁿ, t ∈ ℝ, ( S * * d f ) ( x ) = s u p t | 1 / ( 2 π ) e i x · ξ e i t | ξ | d f ̂ ( ξ ) d ξ | , f ∈ (ℝⁿ), x ∈ ℝⁿ, where f̂ is the Fourier transform of f and (ℝⁿ) is the Schwartz class of rapidly decreasing functions. If d = 2, S d f is the solution to the initial value problem for the free Schrödinger equation (cf. (1.3) in this paper). We prove that for radial functions f ∈ (ℝⁿ), if n ≥ 3, 0 < d ≤ 2, and p ≥...

Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion

Moshe Marcus, Laurent Véron (2004)

Journal of the European Mathematical Society

Similarity:

Let Ω be a bounded domain of class C 2 in N and let K be a compact subset of Ω . Assume that q ( N + 1 ) / ( N 1 ) and denote by U K the maximal solution of Δ u + u q = 0 in Ω which vanishes on Ω K . We obtain sharp upper and lower estimates for U K in terms of the Bessel capacity C 2 / q , q ' and prove that U K is σ -moderate. In addition we describe the precise asymptotic behavior of U K at points σ K , which depends on the “density” of K at σ , measured in terms of the capacity C 2 / q , q ' .

The method of rotation and Marcinkiewicz integrals on product domains

Jiecheng Chen, Dashan Fan, Yiming Ying (2002)

Studia Mathematica

Similarity:

We give some rather weak sufficient condition for L p boundedness of the Marcinkiewicz integral operator μ Ω on the product spaces × m (1 < p < ∞), which improves and extends some known results.