Displaying similar documents to “Generalized gradients for locally Lipschitz integral functionals on non- L p -type spaces of measurable functions”

The space of multipliers and convolutors of Orlicz spaces on a locally compact group

Hasan P. Aghababa, Ibrahim Akbarbaglu, Saeid Maghsoudi (2013)

Studia Mathematica

Similarity:

Let G be a locally compact group, let (φ,ψ) be a complementary pair of Young functions, and let L φ ( G ) and L ψ ( G ) be the corresponding Orlicz spaces. Under some conditions on φ, we will show that for a Banach L φ ( G ) -submodule X of L ψ ( G ) , the multiplier space H o m L φ ( G ) ( L φ ( G ) , X * ) is a dual Banach space with predual L φ ( G ) X : = s p a n ¯ u x : u L φ ( G ) , x X , where the closure is taken in the dual space of H o m L φ ( G ) ( L φ ( G ) , X * ) . We also prove that if φ is a Δ₂-regular N-function, then C v φ ( G ) , the space of convolutors of M φ ( G ) , is identified with the dual of a Banach algebra of functions on G...

On the inclusions of X Φ spaces

Seyyed Mohammad Tabatabaie, Alireza Bagheri Salec (2023)

Mathematica Bohemica

Similarity:

We give some equivalent conditions (independent from the Young functions) for inclusions between some classes of X Φ spaces, where Φ is a Young function and X is a quasi-Banach function space on a σ -finite measure space ( Ω , 𝒜 , μ ) .

The Young Measure Representation for Weak Cluster Points of Sequences in M-spaces of Measurable Functions

Hôǹg Thái Nguyêñ, Dariusz Pączka (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let ⟨X,Y⟩ be a duality pair of M-spaces X,Y of measurable functions from Ω ⊂ ℝ ⁿ into d . The paper deals with Y-weak cluster points ϕ̅ of the sequence ϕ ( · , z j ( · ) ) in X, where z j : Ω m is measurable for j ∈ ℕ and ϕ : Ω × m d is a Carathéodory function. We obtain general sufficient conditions, under which, for some negligible set A ϕ , the integral I ( ϕ , ν x ) : = m ϕ ( x , λ ) d ν x ( λ ) exists for x Ω A ϕ and ϕ ̅ ( x ) = I ( ϕ , ν x ) on Ω A ϕ , where ν = ν x x Ω is a measurable-dependent family of Radon probability measures on m .

Trudinger's inequality for double phase functionals with variable exponents

Fumi-Yuki Maeda, Yoshihiro Mizuta, Takao Ohno, Tetsu Shimomura (2021)

Czechoslovak Mathematical Journal

Similarity:

Our aim in this paper is to establish Trudinger’s inequality on Musielak-Orlicz-Morrey spaces L Φ , κ ( G ) under conditions on Φ which are essentially weaker than those considered in a former paper. As an application and example, we show Trudinger’s inequality for double phase functionals Φ ( x , t ) = t p ( x ) + a ( x ) t q ( x ) , where p ( · ) and q ( · ) satisfy log-Hölder conditions and a ( · ) is nonnegative, bounded and Hölder continuous.

On the H-property and rotundity of Cesàro direct sums of Banach spaces

Saard Youyen, Suthep Suantai (2008)

Banach Center Publications

Similarity:

In this paper, we define the direct sum ( i = 1 n X i ) c e s p of Banach spaces X₁,X₂,..., and Xₙ and consider it equipped with the Cesàro p-norm when 1 ≤ p < ∞. We show that ( i = 1 n X i ) c e s p has the H-property if and only if each X i has the H-property, and ( i = 1 n X i ) c e s p has the Schur property if and only if each X i has the Schur property. Moreover, we also show that ( i = 1 n X i ) c e s p is rotund if and only if each X i is rotund.

Pisier's inequality revisited

Tuomas Hytönen, Assaf Naor (2013)

Studia Mathematica

Similarity:

Given a Banach space X, for n ∈ ℕ and p ∈ (1,∞) we investigate the smallest constant ∈ (0,∞) for which every n-tuple of functions f₁,...,fₙ: -1,1ⁿ → X satisfies - 1 , 1 | | j = 1 n j f j ( ε ) | | p d μ ( ε ) p - 1 , 1 - 1 , 1 | | j = 1 n δ j Δ f j ( ε ) | | p d μ ( ε ) d μ ( δ ) , where μ is the uniform probability measure on the discrete hypercube -1,1ⁿ, and j j = 1 n and Δ = j = 1 n j are the hypercube partial derivatives and the hypercube Laplacian, respectively. Denoting this constant by p ( X ) , we show that p ( X ) k = 1 n 1 / k for every Banach space (X,||·||). This extends the classical Pisier inequality, which corresponds to the special...

On the Aronszajn property for integral equations in Banach space

Stanisław Szufla (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

For the integral equation (1) below we prove the existence on an interval J = [ 0 , a ] of a solution x with values in a Banach space E , belonging to the class L p ( J , E ) , p > 1 . Further, the set of solutions is shown to be a compact one in the sense of Aronszajn.

Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators

Sibei Yang (2015)

Czechoslovak Mathematical Journal

Similarity:

Let L : = - Δ + V be a Schrödinger operator on n with n 3 and V 0 satisfying Δ - 1 V L ( n ) . Assume that ϕ : n × [ 0 , ) [ 0 , ) is a function such that ϕ ( x , · ) is an Orlicz function, ϕ ( · , t ) 𝔸 ( n ) (the class of uniformly Muckenhoupt weights). Let w be an L -harmonic function on n with 0 < C 1 w C 2 , where C 1 and C 2 are positive constants. In this article, the author proves that the mapping H ϕ , L ( n ) f w f H ϕ ( n ) is an isomorphism from the Musielak-Orlicz-Hardy space associated with L , H ϕ , L ( n ) , to the Musielak-Orlicz-Hardy space H ϕ ( n ) under some assumptions on ϕ . As applications, the author further...

-sums and the Banach space / c

Christina Brech, Piotr Koszmider (2014)

Fundamenta Mathematicae

Similarity:

This paper is concerned with the isomorphic structure of the Banach space / c and how it depends on combinatorial tools whose existence is consistent with but not provable from the usual axioms of ZFC. Our main global result is that it is consistent that / c does not have an orthogonal -decomposition, that is, it is not of the form ( X ) for any Banach space X. The main local result is that it is consistent that ( c ( ) ) does not embed isomorphically into / c , where is the cardinality of the continuum,...

Linear operators on non-locally convex Orlicz spaces

Marian Nowak, Agnieszka Oelke (2008)

Banach Center Publications

Similarity:

We study linear operators from a non-locally convex Orlicz space L Φ to a Banach space ( X , | | · | | X ) . Recall that a linear operator T : L Φ X is said to be σ-smooth whenever u ( o ) 0 in L Φ implies | | T ( u ) | | X 0 . It is shown that every σ-smooth operator T : L Φ X factors through the inclusion map j : L Φ L Φ ̅ , where Φ̅ denotes the convex minorant of Φ. We obtain the Bochner integral representation of σ-smooth operators T : L Φ X . This extends some earlier results of J. J. Uhl concerning the Bochner integral representation of linear operators defined on...

Limited p -converging operators and relation with some geometric properties of Banach spaces

Mohammad B. Dehghani, Seyed M. Moshtaghioun (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

By using the concepts of limited p -converging operators between two Banach spaces X and Y , L p -sets and L p -limited sets in Banach spaces, we obtain some characterizations of these concepts relative to some well-known geometric properties of Banach spaces, such as * -Dunford–Pettis property of order p and Pelczyński’s property of order p , 1 p < .

Sequentially Right Banach spaces of order p

Mahdi Dehghani, Mohammad B. Dehghani, Mohammad S. Moshtaghioun (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order p , and those defined by the dual property, the sequentially Right * Banach spaces of order p for 1 p . These classes of Banach spaces are characterized by the notions of L p -limited sets in the corresponding dual space and R p * subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space X and a reflexive Banach...

C*-algebras have a quantitative version of Pełczyński's property (V)

Hana Krulišová (2017)

Czechoslovak Mathematical Journal

Similarity:

A Banach space X has Pełczyński’s property (V) if for every Banach space Y every unconditionally converging operator T : X Y is weakly compact. H. Pfitzner proved that C * -algebras have Pełczyński’s property (V). In the preprint (Krulišová, (2015)) the author explores possible quantifications of the property (V) and shows that C ( K ) spaces for a compact Hausdorff space K enjoy a quantitative version of the property (V). In this paper we generalize this result by quantifying Pfitzner’s theorem. Moreover,...

Reflexivity and approximate fixed points

Eva Matoušková, Simeon Reich (2003)

Studia Mathematica

Similarity:

A Banach space X is reflexive if and only if every bounded sequence xₙ in X contains a norm attaining subsequence. This means that it contains a subsequence x n k for which s u p f S X * l i m s u p k f ( x n k ) is attained at some f in the dual unit sphere S X * . A Banach space X is not reflexive if and only if it contains a normalized sequence xₙ with the property that for every f S X * , there exists g S X * such that l i m s u p n f ( x ) < l i m i n f n g ( x ) . Combining this with a result of Shafrir, we conclude that every infinite-dimensional Banach space contains an unbounded...

The weak Gelfand-Phillips property in spaces of compact operators

Ioana Ghenciu (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For Banach spaces X and Y , let K w * ( X * , Y ) denote the space of all w * - w continuous compact operators from X * to Y endowed with the operator norm. A Banach space X has the w G P property if every Grothendieck subset of X is relatively weakly compact. In this paper we study Banach spaces with property w G P . We investigate whether the spaces K w * ( X * , Y ) and X ϵ Y have the w G P property, when X and Y have the w G P property.

On Some Properties of Separately Increasing Functions from [0,1]ⁿ into a Banach Space

Artur Michalak (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We say that a function f from [0,1] to a Banach space X is increasing with respect to E ⊂ X* if x* ∘ f is increasing for every x* ∈ E. A function f : [ 0 , 1 ] m X is separately increasing if it is increasing in each variable separately. We show that if X is a Banach space that does not contain any isomorphic copy of c₀ or such that X* is separable, then for every separately increasing function f : [ 0 , 1 ] m X with respect to any norming subset there exists a separately increasing function g : [ 0 , 1 ] m such that the sets of...

Selivanovski hard sets are hard

Janusz Pawlikowski (2015)

Fundamenta Mathematicae

Similarity:

Let H Z 2 ω . For n ≥ 2, we prove that if Selivanovski measurable functions from 2 ω to Z give as preimages of H all Σₙ¹ subsets of 2 ω , then so do continuous injections.

Uniform convexity and associate spaces

Petteri Harjulehto, Peter Hästö (2018)

Czechoslovak Mathematical Journal

Similarity:

We prove that the associate space of a generalized Orlicz space L φ ( · ) is given by the conjugate modular φ * even without the assumption that simple functions belong to the space. Second, we show that every weakly doubling Φ -function is equivalent to a doubling Φ -function. As a consequence, we conclude that L φ ( · ) is uniformly convex if φ and φ * are weakly doubling.

Operator Figà-Talamanca-Herz algebras

Volker Runde (2003)

Studia Mathematica

Similarity:

Let G be a locally compact group. We use the canonical operator space structure on the spaces L p ( G ) for p ∈ [1,∞] introduced by G. Pisier to define operator space analogues O A p ( G ) of the classical Figà-Talamanca-Herz algebras A p ( G ) . If p ∈ (1,∞) is arbitrary, then A p ( G ) O A p ( G ) and the inclusion is a contraction; if p = 2, then OA₂(G) ≅ A(G) as Banach spaces, but not necessarily as operator spaces. We show that O A p ( G ) is a completely contractive Banach algebra for each p ∈ (1,∞), and that O A q ( G ) O A p ( G ) completely contractively...

A theorem of Gel'fand-Mazur type

Hung Le Pham (2009)

Studia Mathematica

Similarity:

Denote by any set of cardinality continuum. It is proved that a Banach algebra A with the property that for every collection a α : α A there exist α ≠ β ∈ such that a α a β A is isomorphic to i = 1 r ( [ X ] / X d i [ X ] ) E , where d , . . . , d r , and E is either X [ X ] / X d [ X ] for some d₀ ∈ ℕ or a 1-dimensional i = 1 r [ X ] / X d i [ X ] -bimodule with trivial right module action. In particular, ℂ is the unique non-zero prime Banach algebra satisfying the above condition.

Lower bounds for Jung constants of Orlicz sequence spaces

Z. D. Ren (2010)

Annales Polonici Mathematici

Similarity:

A new lower bound for the Jung constant J C ( l ( Φ ) ) of the Orlicz sequence space l ( Φ ) defined by an N-function Φ is found. It is proved that if l ( Φ ) is reflexive and the function tΦ’(t)/Φ(t) is increasing on ( 0 , Φ - 1 ( 1 ) ] , then J C ( l ( Φ ) ) ( Φ - 1 ( 1 / 2 ) ) / ( Φ - 1 ( 1 ) ) . Examples in Section 3 show that the above estimate is better than in Zhang’s paper (2003) in some cases and that the results given in Yan’s paper (2004) are not accurate.

Existence theorems for nonlinear differential equations having trichotomy in Banach spaces

Adel Mahmoud Gomaa (2017)

Czechoslovak Mathematical Journal

Similarity:

We give existence theorems for weak and strong solutions with trichotomy of the nonlinear differential equation x ˙ ( t ) = ( t ) x ( t ) + f ( t , x ( t ) ) , t ( P ) where { ( t ) : t } is a family of linear operators from a Banach space E into itself and f : × E E . By L ( E ) we denote the space of linear operators from E into itself. Furthermore, for a < b and d > 0 , we let C ( [ - d , 0 ] , E ) be the Banach space of continuous functions from [ - d , 0 ] into E and f d : [ a , b ] × C ( [ - d , 0 ] , E ) E . Let ^ : [ a , b ] L ( E ) be a strongly measurable and Bochner integrable operator on [ a , b ] and for t [ a , b ] define τ t x ( s ) = x ( t + s ) for each s [ - d , 0 ] . We prove that, under certain...

On some properties of generalized Marcinkiewicz spaces

Evgeniy Pustylnik (2001)

Studia Mathematica

Similarity:

We give a full solution of the following problems concerning the spaces M φ ( X ) : (i) to what extent two functions φ and ψ should be different in order to ensure that M φ ( X ) M ψ ( X ) for any nontrivial Banach couple X⃗; (ii) when an embedding M φ ( X ) M ψ ( X ) can (or cannot) be dense; (iii) which Banach space can be regarded as an M φ ( X ) -space for some (unknown beforehand) Banach couple X⃗.

Multiparameter ergodic Cesàro-α averages

A. L. Bernardis, R. Crescimbeni, C. Ferrari Freire (2015)

Colloquium Mathematicae

Similarity:

Net (X,ℱ,ν) be a σ-finite measure space. Associated with k Lamperti operators on L p ( ν ) , T , . . . , T k , n ̅ = ( n , . . . , n k ) k and α ̅ = ( α , . . . , α k ) with 0 < α j 1 , we define the ergodic Cesàro-α̅ averages n ̅ , α ̅ f = 1 / ( j = 1 k A n j α j ) i k = 0 n k i = 0 n j = 1 k A n j - i j α j - 1 T k i k T i f . For these averages we prove the almost everywhere convergence on X and the convergence in the L p ( ν ) norm, when n , . . . , n k independently, for all f L p ( d ν ) with p > 1/α⁎ where α = m i n 1 j k α j . In the limit case p = 1/α⁎, we prove that the averages n ̅ , α ̅ f converge almost everywhere on X for all f in the Orlicz-Lorentz space Λ ( 1 / α , φ m - 1 ) with φ ( t ) = t ( 1 + l o g t ) m . To obtain the result in the limit case we need...