Displaying similar documents to “Basic relations valid for the Bernstein spaces B ² σ and their extensions to larger function spaces via a unified distance concept”

Bad properties of the Bernstein numbers

Albrecht Pietsch (2008)

Studia Mathematica

Similarity:

We show that the classes p b e r n : = T : ( b ( T ) ) l p associated with the Bernstein numbers bₙ fail to be operator ideals. Moreover, p b e r n q b e r n r b e r n for 1/r = 1/p + 1/q.

Approximation properties for modified ( p , q ) -Bernstein-Durrmeyer operators

Mohammad Mursaleen, Ahmed A. H. Alabied (2018)

Mathematica Bohemica

Similarity:

We introduce modified ( p , q ) -Bernstein-Durrmeyer operators. We discuss approximation properties for these operators based on Korovkin type approximation theorem and compute the order of convergence using usual modulus of continuity. We also study the local approximation property of the sequence of positive linear operators D n , p , q * and compute the rate of convergence for the function f belonging to the class Lip M ( γ ) .

Siciak’s extremal function via Bernstein and Markov constants for compact sets in N

Leokadia Bialas-Ciez (2012)

Annales Polonici Mathematici

Similarity:

The paper is concerned with the best constants in the Bernstein and Markov inequalities on a compact set E N . We give some basic properties of these constants and we prove that two extremal-like functions defined in terms of the Bernstein constants are plurisubharmonic and very close to the Siciak extremal function Φ E . Moreover, we show that one of these extremal-like functions is equal to Φ E if E is a nonpluripolar set with l i m n M ( E ) 1 / n = 1 where M ( E ) : = s u p | | | g r a d P | | | E / | | P | | E , the supremum is taken over all polynomials P of N variables...

Bernstein and De Giorgi type problems: new results via a geometric approach

Alberto Farina, Berardino Sciunzi, Enrico Valdinoci (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We use a Poincaré type formula and level set analysis to detect one-dimensional symmetry of stable solutions of possibly degenerate or singular elliptic equations of the form div a ( | u ( x ) | ) u ( x ) + f ( u ( x ) ) = 0 . Our setting is very general and, as particular cases, we obtain new proofs of a conjecture of De Giorgi for phase transitions in  2 and  3 and of the Bernstein problem on the flatness of minimal area graphs in  3 . A one-dimensional symmetry result in the half-space is also obtained as a byproduct...

On Bernstein inequalities for multivariate trigonometric polynomials in L p , 0 p

Laiyi Zhu, Xingjun Zhao (2022)

Czechoslovak Mathematical Journal

Similarity:

Let 𝕋 n be the space of all trigonometric polynomials of degree not greater than n with complex coefficients. Arestov extended the result of Bernstein and others and proved that ( 1 / n ) T n ' p T n p for 0 p and T n 𝕋 n . We derive the multivariate version of the result of Golitschek and Lorentz T n cos α + 1 n T n sin α l ( m ) p T n p , 0 p for all trigonometric polynomials (with complex coeffcients) in m variables of degree at most n .

Uniform L 1 error bounds for semi-discrete finite element solutions of evolutionary integral equations

Lin, Qun, Xu, Da, Zhang, Shuhua

Similarity:

In this paper, we consider the second-order continuous time Galerkin approximation of the solution to the initial problem u t + 0 t β ( t - s ) A u ( s ) d s = 0 , u ( 0 ) = v , t > 0 , where A is an elliptic partial-differential operator and β ( t ) is positive, nonincreasing and log-convex on ( 0 , ) with 0 β ( ) < β ( 0 + ) . Error estimates are derived in the norm of L t 1 ( 0 , ; L x 2 ) , and some estimates for the first order time derivatives of the errors are also given.

Base change for Bernstein centers of depth zero principal series blocks

Thomas J. Haines (2012)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let  G be an unramified group over a p -adic field. This article introduces a base change homomorphism for Bernstein centers of depth-zero principal series blocks for  G and proves the corresponding base change fundamental lemma. This result is used in the approach to Shimura varieties with Γ 1 ( p ) -level structure initiated by M. Rapoport and the author in [15].

Sets with the Bernstein and generalized Markov properties

Mirosław Baran, Agnieszka Kowalska (2014)

Annales Polonici Mathematici

Similarity:

It is known that for C determining sets Markov’s property is equivalent to Bernstein’s property. We are interested in finding a generalization of this fact for sets which are not C determining. In this paper we give examples of sets which are not C determining, but have the Bernstein and generalized Markov properties.

An irrational problem

Franklin D. Tall (2002)

Fundamenta Mathematicae

Similarity:

Given a topological space ⟨X,⟩ ∈ M, an elementary submodel of set theory, we define X M to be X ∩ M with topology generated by U M : U M . Suppose X M is homeomorphic to the irrationals; must X = X M ? We have partial results. We also answer a question of Gruenhage by showing that if X M is homeomorphic to the “Long Cantor Set”, then X = X M .

Estimates for polynomials in the unit disk with varying constant terms

Stephan Ruscheweyh, Magdalena Wołoszkiewicz (2011)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let · be the uniform norm in the unit disk. We study the quantities M n ( α ) : = inf ( z P ( z ) + α - α ) where the infimum is taken over all polynomials P of degree n - 1 with P ( z ) = 1 and α > 0 . In a recent paper by Fournier, Letac and Ruscheweyh (Math. Nachrichten 283 (2010), 193-199) it was shown that inf α > 0 M n ( α ) = 1 / n . We find the exact values of M n ( α ) and determine corresponding extremal polynomials. The method applied uses known cases of maximal ranges of polynomials.

Locally Σ₁-definable well-orders of H(κ⁺)

Peter Holy, Philipp Lücke (2014)

Fundamenta Mathematicae

Similarity:

Given an uncountable cardinal κ with κ = κ < κ and 2 κ regular, we show that there is a forcing that preserves cofinalities less than or equal to 2 κ and forces the existence of a well-order of H(κ⁺) that is definable over ⟨H(κ⁺),∈⟩ by a Σ₁-formula with parameters. This shows that, in contrast to the case "κ = ω", the existence of a locally definable well-order of H(κ⁺) of low complexity is consistent with failures of the GCH at κ. We also show that the forcing mentioned above introduces a Bernstein...

On the r -free values of the polynomial x 2 + y 2 + z 2 + k

Gongrui Chen, Wenxiao Wang (2023)

Czechoslovak Mathematical Journal

Similarity:

Let k be a fixed integer. We study the asymptotic formula of R ( H , r , k ) , which is the number of positive integer solutions 1 x , y , z H such that the polynomial x 2 + y 2 + z 2 + k is r -free. We obtained the asymptotic formula of R ( H , r , k ) for all r 2 . Our result is new even in the case r = 2 . We proved that R ( H , 2 , k ) = c k H 3 + O ( H 9 / 4 + ε ) , where c k > 0 is a constant depending on k . This improves upon the error term O ( H 7 / 3 + ε ) obtained by G.-L. Zhou, Y. Ding (2022).

Consecutive square-free values of the type x 2 + y 2 + z 2 + k , x 2 + y 2 + z 2 + k + 1

Ya-Fang Feng (2023)

Czechoslovak Mathematical Journal

Similarity:

We show that for any given integer k there exist infinitely many consecutive square-free numbers of the type x 2 + y 2 + z 2 + k , x 2 + y 2 + z 2 + k + 1 . We also establish an asymptotic formula for 1 x , y , z H such that x 2 + y 2 + z 2 + k , x 2 + y 2 + z 2 + k + 1 are square-free. The method we used in this paper is due to Tolev.

Some Hölder-logarithmic estimates on Hardy-Sobolev spaces

Imed Feki, Ameni Massoudi (2024)

Czechoslovak Mathematical Journal

Similarity:

We prove some optimal estimates of Hölder-logarithmic type in the Hardy-Sobolev spaces H k , p ( G ) , where k * , 1 p and G is either the open unit disk 𝔻 or the annular domain G s , 0 < s < 1 of the complex space . More precisely, we study the behavior on the interior of G of any function f belonging to the unit ball of the Hardy-Sobolev spaces H k , p ( G ) from its behavior on any open connected subset I of the boundary G of G with respect to the L 1 -norm. Our results can be viewed as an improvement and generalization of...

On the behaviour close to the unit circle of the power series with Möbius function coefficients

Oleg Petrushov (2014)

Acta Arithmetica

Similarity:

Let ( z ) = n = 1 μ ( n ) z n . We prove that for each root of unity e ( β ) = e 2 π i β there is an a > 0 such that ( e ( β ) r ) = Ω ( ( 1 - r ) - a ) as r → 1-. For roots of unity e(l/q) with q ≤ 100 we prove that these omega-estimates are true with a = 1/2. From omega-estimates for (z) we obtain omega-estimates for some finite sums.

A priori bounds for positive radial solutions of quasilinear equations of Lane–Emden type

Soohyun Bae (2023)

Archivum Mathematicum

Similarity:

We consider the quasilinear equation Δ p u + K ( | x | ) u q = 0 , and present the proof of the local existence of positive radial solutions near 0 under suitable conditions on K . Moreover, we provide a priori estimates of positive radial solutions near when r - K ( r ) for - p is bounded near .

The range of non-linear natural polynomials cannot be context-free

Dömötör Pálvölgyi (2020)

Kybernetika

Similarity:

Suppose that some polynomial f with rational coefficients takes only natural values at natural numbers, i. e., L = { f ( n ) n } . We show that the base- q representation of L is a context-free language if and only if f is linear, answering a question of Shallit. The proof is based on a new criterion for context-freeness, which is a combination of the Interchange lemma and a generalization of the Pumping lemma.

Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in 3

M. Burak Erdoğan, Michael Goldberg, Wilhelm Schlag (2008)

Journal of the European Mathematical Society

Similarity:

We present a novel approach for bounding the resolvent of H = - Δ + i ( A · + · A ) + V = : - Δ + L 1 for large energies. It is shown here that there exist a large integer m and a large number λ 0 so that relative to the usual weighted L 2 -norm, ( L ( - Δ + ( λ + i 0 ) ) - 1 ) m < 1 2 2 for all λ > λ 0 . This requires suitable decay and smoothness conditions on A , V . The estimate (2) is trivial when A = 0 , but difficult for large A since the gradient term exactly cancels the natural decay of the free resolvent. To obtain (2), we introduce a conical decomposition of the resolvent and...

On the lattice of polynomials with integer coefficients: the covering radius in L p ( 0 , 1 )

Wojciech Banaszczyk, Artur Lipnicki (2015)

Annales Polonici Mathematici

Similarity:

The paper deals with the approximation by polynomials with integer coefficients in L p ( 0 , 1 ) , 1 ≤ p ≤ ∞. Let P n , r be the space of polynomials of degree ≤ n which are divisible by the polynomial x r ( 1 - x ) r , r ≥ 0, and let P n , r P n , r be the set of polynomials with integer coefficients. Let μ ( P n , r ; L p ) be the maximal distance of elements of P n , r from P n , r in L p ( 0 , 1 ) . We give rather precise quantitative estimates of μ ( P n , r ; L ) for n ≳ 6r. Then we obtain similar, somewhat less precise, estimates of μ ( P n , r ; L p ) for p ≠ 2. It follows that μ ( P n , r ; L p ) n - 2 r - 2 / p as n → ∞. The results...