Displaying similar documents to “Remarks on q-CCR relations for |q| > 1”

Three examples of brownian flows on

Yves Le Jan, Olivier Raimond (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We show that the only flow solving the stochastic differential equation (SDE) on d X t = 1 { X t g t ; 0 } W + ( d t ) + 1 { X t l t ; 0 } d W - ( d t ) , where W + and W - are two independent white noises, is a coalescing flow we will denote by ϕ ± . The flow ϕ ± is a Wiener solution of the SDE. Moreover, K + = 𝖤 [ δ ϕ ± | W + ] is the unique solution (it is also a Wiener solution) of the SDE K s , t + f ( x ) = f ( x ) + s t K s , u ( 1 + f ' ) ( x ) W + ( d u ) + 1 2 s t K s , u f ` ` ( x ) d u for s l t ; t , x and f a twice continuously differentiable function. A third flow ϕ + can be constructed out of the n -point motions of K + . This flow is coalescing and its n -point motion...

The norm of the polynomial truncation operator on the unit disk and on [-1,1]

Tamás Erdélyi (2001)

Colloquium Mathematicae

Similarity:

Let D and ∂D denote the open unit disk and the unit circle of the complex plane, respectively. We denote by ₙ (resp. c ) the set of all polynomials of degree at most n with real (resp. complex) coefficients. We define the truncation operators Sₙ for polynomials P c of the form P ( z ) : = j = 0 n a j z j , a j C , by S ( P ) ( z ) : = j = 0 n a ̃ j z j , a ̃ j : = a j | a j | m i n | a j | , 1 (here 0/0 is interpreted as 1). We define the norms of the truncation operators by S , D r e a l : = s u p P ( m a x z D | S ( P ) ( z ) | ) / ( m a x z D | P ( z ) | ) , S , D c o m p : = s u p P c ( m a x z D | S ( P ) ( z ) | ) / ( m a x z D | P ( z ) | . Our main theorem establishes the right order of magnitude of the above norms: there is an absolute constant c₁...

The number of absorbed individuals in branching brownian motion with a barrier

Pascal Maillard (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We study supercritical branching Brownian motion on the real line starting at the origin and with constant drift c . At the point x g t ; 0 , we add an absorbing barrier, i.e. individuals touching the barrier are instantly killed without producing offspring. It is known that there is a critical drift c 0 , such that this process becomes extinct almost surely if and only if c c 0 . In this case, if Z x denotes the number of individuals absorbed at the barrier, we give an asymptotic for P ( Z x = n ) as n goes to infinity....

The multiplicity of the zero at 1 of polynomials with constrained coefficients

Peter Borwein, Tamás Erdélyi, Géza Kós (2013)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p 1/p , aj ∈ ℂ , such that ( x - 1 ) k divides P(x). For n ∈ ℕ and L > 0 let κ ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L m a x 1 j n | a j | , a j , such that ( x - 1 ) k divides P(x). We prove that there are absolute constants c₁ > 0 and c₂ > 0 such that c 1 ( n / L ) - 1 κ ( n , L ) c 2 ( n / L ) for every L ≥ 1. This complements an earlier result of the authors valid for every n ∈ ℕ and L ∈...

Representations of the general linear group over symmetry classes of polynomials

Yousef Zamani, Mahin Ranjbari (2018)

Czechoslovak Mathematical Journal

Similarity:

Let V be the complex vector space of homogeneous linear polynomials in the variables x 1 , ... , x m . Suppose G is a subgroup of S m , and χ is an irreducible character of G . Let H d ( G , χ ) be the symmetry class of polynomials of degree d with respect to G and χ . For any linear operator T acting on V , there is a (unique) induced operator K χ ( T ) End ( H d ( G , χ ) ) acting on symmetrized decomposable polynomials by K χ ( T ) ( f 1 * f 2 * ... * f d ) = T f 1 * T f 2 * ... * T f d . In this paper, we show that the representation T K χ ( T ) of the general linear group G L ( V ) is equivalent to the direct sum of χ ( 1 ) copies...

Coppersmith-Rivlin type inequalities and the order of vanishing of polynomials at 1

(2016)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≢ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p ) 1 / p , a j , such that ( x - 1 ) k divides P(x). For n ∈ ℕ, L > 0, and q ≥ 1 let μ q ( n , L ) be the smallest value of k for which there is a polynomial Q of degree k with complex coefficients such that | Q ( 0 ) | > 1 / L ( j = 1 n | Q ( j ) | q ) 1 / q . We find the size of κ p ( n , L ) and μ q ( n , L ) for all n ∈ ℕ, L > 0, and 1 ≤ p,q ≤ ∞. The result about μ ( n , L ) is due to Coppersmith and Rivlin, but our proof is completely different and much shorter even...

On the range of some elementary operators

Hamza El Mouadine, Abdelkhalek Faouzi, Youssef Bouhafsi (2024)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let L ( H ) denote the algebra of all bounded linear operators on a complex infinite dimensional Hilbert space H . For A , B L ( H ) , the generalized derivation δ A , B and the multiplication operator M A , B are defined on L ( H ) by δ A , B ( X ) = A X - X B and M A , B ( X ) = A X B . In this paper, we give a characterization of bounded operators A and B such that the range of M A , B is closed. We present some sufficient conditions for δ A , B to have closed range. Some related results are also given.

On the range-kernel orthogonality of elementary operators

Said Bouali, Youssef Bouhafsi (2015)

Mathematica Bohemica

Similarity:

Let L ( H ) denote the algebra of operators on a complex infinite dimensional Hilbert space H . For A , B L ( H ) , the generalized derivation δ A , B and the elementary operator Δ A , B are defined by δ A , B ( X ) = A X - X B and Δ A , B ( X ) = A X B - X for all X L ( H ) . In this paper, we exhibit pairs ( A , B ) of operators such that the range-kernel orthogonality of δ A , B holds for the usual operator norm. We generalize some recent results. We also establish some theorems on the orthogonality of the range and the kernel of Δ A , B with respect to the wider class of unitarily invariant...

Stable random fields and geometry

Shigeo Takenaka (2010)

Banach Center Publications

Similarity:

Let (M,d) be a metric space with a fixed origin O. P. Lévy defined Brownian motion X(a); a ∈ M as 0. X(O) = 0. 1. X(a) - X(b) is subject to the Gaussian law of mean 0 and variance d(a,b). He gave an example for M = S m , the m-dimensional sphere. Let Y ( B ) ; B ( S m ) be the Gaussian random measure on S m , that is, 1. Y(B) is a centered Gaussian system, 2. the variance of Y(B) is equal of μ(B), where μ is the uniform measure on S m , 3. if B₁ ∩ B₂ = ∅ then Y(B₁) is independent of Y(B₂). 4. for B i , i = 1,2,..., B i B j = ,...

On the lattice of polynomials with integer coefficients: the covering radius in L p ( 0 , 1 )

Wojciech Banaszczyk, Artur Lipnicki (2015)

Annales Polonici Mathematici

Similarity:

The paper deals with the approximation by polynomials with integer coefficients in L p ( 0 , 1 ) , 1 ≤ p ≤ ∞. Let P n , r be the space of polynomials of degree ≤ n which are divisible by the polynomial x r ( 1 - x ) r , r ≥ 0, and let P n , r P n , r be the set of polynomials with integer coefficients. Let μ ( P n , r ; L p ) be the maximal distance of elements of P n , r from P n , r in L p ( 0 , 1 ) . We give rather precise quantitative estimates of μ ( P n , r ; L ) for n ≳ 6r. Then we obtain similar, somewhat less precise, estimates of μ ( P n , r ; L p ) for p ≠ 2. It follows that μ ( P n , r ; L p ) n - 2 r - 2 / p as n → ∞. The results...

Linear maps preserving A -unitary operators

Abdellatif Chahbi, Samir Kabbaj, Ahmed Charifi (2016)

Mathematica Bohemica

Similarity:

Let be a complex Hilbert space, A a positive operator with closed range in ( ) and A ( ) the sub-algebra of ( ) of all A -self-adjoint operators. Assume φ : A ( ) onto itself is a linear continuous map. This paper shows that if φ preserves A -unitary operators such that φ ( I ) = P then ψ defined by ψ ( T ) = P φ ( P T ) is a homomorphism or an anti-homomorphism and ψ ( T ) = ψ ( T ) for all T A ( ) , where P = A + A and A + is the Moore-Penrose inverse of A . A similar result is also true if φ preserves A -quasi-unitary operators in both directions such that there...

A characterization of reflexive spaces of operators

Janko Bračič, Lina Oliveira (2018)

Czechoslovak Mathematical Journal

Similarity:

We show that for a linear space of operators ( 1 , 2 ) the following assertions are equivalent. (i) is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map Ψ = ( ψ 1 , ψ 2 ) on a bilattice Bil ( ) of subspaces determined by with P ψ 1 ( P , Q ) and Q ψ 2 ( P , Q ) for any pair ( P , Q ) Bil ( ) , and such that an operator T ( 1 , 2 ) lies in if and only if ψ 2 ( P , Q ) T ψ 1 ( P , Q ) = 0 for all ( P , Q ) Bil ( ) . This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.

The boundedness of two classes of integral operators

Xin Wang, Ming-Sheng Liu (2021)

Czechoslovak Mathematical Journal

Similarity:

The aim of this paper is to characterize the L p - L q boundedness of two classes of integral operators from L p ( 𝒰 , d V α ) to L q ( 𝒰 , d V β ) in terms of the parameters a , b , c , p , q and α , β , where 𝒰 is the Siegel upper half-space. The results in the presented paper generalize a corresponding result given in C. Liu, Y. Liu, P. Hu, L. Zhou (2019).

L p , q spaces

Joseph Kupka

Similarity:

CONTENTS1. Introduction...................................................................................................... 52. Notation and basic terminology........................................................................... 73. Definition and basic properties of the L p , q spaces................................. 114. Integral representation of bounded linear functionals on L p , q ( B ) ........ 235. Examples in L p , q theory...................................................................................

A localization property for B p q s and F p q s spaces

Hans Triebel (1994)

Studia Mathematica

Similarity:

Let f j = k a k f ( 2 j + 1 x - 2 k ) , where the sum is taken over the lattice of all points k in n having integer-valued components, j∈ℕ and a k . Let A p q s be either B p q s or F p q s (s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞) on n . The aim of the paper is to clarify under what conditions f j | A p q s is equivalent to 2 j ( s - n / p ) ( k | a k | p ) 1 / p f | A p q s .