Displaying similar documents to “Anosov theorem for coincidences on nilmanifolds”

On some properties of the upper central series in Leibniz algebras

Leonid A. Kurdachenko, Javier Otal, Igor Ya. Subbotin (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

This article discusses the Leibniz algebras whose upper hypercenter has finite codimension. It is proved that such an algebra L includes a finite dimensional ideal K such that the factor-algebra L / K is hypercentral. This result is an extension to the Leibniz algebra of the corresponding result obtained earlier for Lie algebras. It is also analogous to the corresponding results obtained for groups and modules.

Classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center

Bin Ren, Lin Sheng Zhu (2017)

Czechoslovak Mathematical Journal

Similarity:

A Lie algebra L is called 2-step nilpotent if L is not abelian and [ L , L ] lies in the center of L . 2-step nilpotent Lie algebras are useful in the study of some geometric problems, and their classification has been an important problem in Lie theory. In this paper, we give a classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center.

Leibniz's rule on two-step nilpotent Lie groups

Krystian Bekała (2016)

Colloquium Mathematicae

Similarity:

Let be a nilpotent Lie algebra which is also regarded as a homogeneous Lie group with the Campbell-Hausdorff multiplication. This allows us to define a generalized multiplication f g = ( f g ) of two functions in the Schwartz class (*), where and are the Abelian Fourier transforms on the Lie algebra and on the dual * and ∗ is the convolution on the group . In the operator analysis on nilpotent Lie groups an important notion is the one of symbolic calculus which can be viewed as a higher order...

The groups of automorphisms of the Witt W n and Virasoro Lie algebras

Vladimir V. Bavula (2016)

Czechoslovak Mathematical Journal

Similarity:

Let L n = K [ x 1 ± 1 , ... , x n ± 1 ] be a Laurent polynomial algebra over a field K of characteristic zero, W n : = Der K ( L n ) the Lie algebra of K -derivations of the algebra L n , the so-called Witt Lie algebra, and let Vir be the Virasoro Lie algebra which is a 1 -dimensional central extension of the Witt Lie algebra. The Lie algebras W n and Vir are infinite dimensional Lie algebras. We prove that the following isomorphisms of the groups of Lie algebra automorphisms hold: Aut Lie ( Vir ) Aut Lie ( W 1 ) { ± 1 } K * , and give a short proof that Aut Lie ( W n ) Aut K - alg ( L n ) GL n ( ) K * n .

Local superderivations on Lie superalgebra 𝔮 ( n )

Haixian Chen, Ying Wang (2018)

Czechoslovak Mathematical Journal

Similarity:

Let 𝔮 ( n ) be a simple strange Lie superalgebra over the complex field . In a paper by A. Ayupov, K. Kudaybergenov (2016), the authors studied the local derivations on semi-simple Lie algebras over and showed the difference between the properties of local derivations on semi-simple and nilpotent Lie algebras. We know that Lie superalgebras are a generalization of Lie algebras and the properties of some Lie superalgebras are similar to those of semi-simple Lie algebras, but 𝔭 ( n ) is an exception....

On unit group of finite semisimple group algebras of non-metabelian groups up to order 72

Gaurav Mittal, Rajendra Kumar Sharma (2021)

Mathematica Bohemica

Similarity:

We characterize the unit group of semisimple group algebras 𝔽 q G of some non-metabelian groups, where F q is a field with q = p k elements for p prime and a positive integer k . In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group ( ( C 3 × C 3 ) C 3 ) C 2 of order 54, and 7 non-metabelian groups of order 72. This completes the study of unit groups of semisimple group algebras for groups upto order 72.

𝔤 -quasi-Frobenius Lie algebras

David N. Pham (2016)

Archivum Mathematicum

Similarity:

A Lie version of Turaev’s G ¯ -Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a 𝔤 -quasi-Frobenius Lie algebra for 𝔤 a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra ( 𝔮 , β ) together with a left 𝔤 -module structure which acts on 𝔮 via derivations and for which β is 𝔤 -invariant. Geometrically, 𝔤 -quasi-Frobenius Lie algebras are the Lie algebra structures associated to...

Quantized semisimple Lie groups

Rita Fioresi, Robert Yuncken (2024)

Archivum Mathematicum

Similarity:

The goal of this expository paper is to give a quick introduction to q -deformations of semisimple Lie groups. We discuss principally the rank one examples of 𝒰 q ( 𝔰𝔩 2 ) , 𝒪 ( SU q ( 2 ) ) , 𝒟 ( SL q ( 2 , ) ) and related algebras. We treat quantized enveloping algebras, representations of 𝒰 q ( 𝔰𝔩 2 ) , generalities on Hopf algebras and quantum groups, * -structures, quantized algebras of functions on q -deformed compact semisimple groups, the Peter-Weyl theorem, * -Hopf algebras associated to complex semisimple Lie groups and the Drinfeld...

On the nilpotent residuals of all subalgebras of Lie algebras

Wei Meng, Hailou Yao (2018)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒩 denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra L over an arbitrary field 𝔽 , there exists a smallest ideal I of L such that L / I 𝒩 . This uniquely determined ideal of L is called the nilpotent residual of L and is denoted by L 𝒩 . In this paper, we define the subalgebra S ( L ) = H L I L ( H 𝒩 ) . Set S 0 ( L ) = 0 . Define S i + 1 ( L ) / S i ( L ) = S ( L / S i ( L ) ) for i 1 . By S ( L ) denote the terminal term of the ascending series. It is proved that L = S ( L ) if and only if L 𝒩 is nilpotent. In addition, we investigate the basic properties of a...

A complete analogue of Hardy's theorem on semisimple Lie groups

Rudra P. Sarkar (2002)

Colloquium Mathematicae

Similarity:

A result by G. H. Hardy ([11]) says that if f and its Fourier transform f̂ are O ( | x | m e - α x ² ) and O ( | x | e - x ² / ( 4 α ) ) respectively for some m,n ≥ 0 and α > 0, then f and f̂ are P ( x ) e - α x ² and P ' ( x ) e - x ² / ( 4 α ) respectively for some polynomials P and P’. If in particular f is as above, but f̂ is o ( e - x ² / ( 4 α ) ) , then f = 0. In this article we will prove a complete analogue of this result for connected noncompact semisimple Lie groups with finite center. Our proof can be carried over to the real reductive groups of the Harish-Chandra class.

The variety of dual mock-Lie algebras

Luisa M. Camacho, Ivan Kaygorodov, Viktor Lopatkin, Mohamed A. Salim (2020)

Communications in Mathematics

Similarity:

We classify all complex 7 - and 8 -dimensional dual mock-Lie algebras by the algebraic and geometric way. Also, we find all non-trivial complex 9 -dimensional dual mock-Lie algebras.

Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective

Xinfeng Liang, Feng Wei, Ajda Fošner (2019)

Czechoslovak Mathematical Journal

Similarity:

Let be a commutative ring, 𝒢 be a generalized matrix algebra over with weakly loyal bimodule and 𝒵 ( 𝒢 ) be the center of 𝒢 . Suppose that 𝔮 : 𝒢 × 𝒢 𝒢 is an -bilinear mapping and that 𝔗 𝔮 : 𝒢 𝒢 is a trace of 𝔮 . The aim of this article is to describe the form of 𝔗 𝔮 satisfying the centralizing condition [ 𝔗 𝔮 ( x ) , x ] 𝒵 ( 𝒢 ) (and commuting condition [ 𝔗 𝔮 ( x ) , x ] = 0 ) for all x 𝒢 . More precisely, we will revisit the question of when the centralizing trace (and commuting trace) 𝔗 𝔮 has the so-called proper form from a new perspective. Using the aforementioned...

The evolution and Poisson kernels on nilpotent meta-abelian groups

Richard Penney, Roman Urban (2013)

Studia Mathematica

Similarity:

Let S be a semidirect product S = N⋊ A where N is a connected and simply connected, non-abelian, nilpotent meta-abelian Lie group and A is isomorphic to k , k>1. We consider a class of second order left-invariant differential operators on S of the form α = L a + Δ α , where α k , and for each a k , L a is left-invariant second order differential operator on N and Δ α = Δ - α , , where Δ is the usual Laplacian on k . Using some probabilistic techniques (e.g., skew-product formulas for diffusions on S and N respectively)...

-homomorphisms of Lie algebras

Aleksander A. Lashkhi (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

Si studiano gli omomorfismi reticolari ( -omomorfismi) di algebre di Lie sopra anelli commutativi con unità. Le algebre di Lie sopra un campo e le p -algebre di Lie non ammettono -omomorfismi propri. Si assegnano condizioni necessarie e sufficienti affinchè un'algebra di Lie periodica o mista possieda un « -omomorfismo su una catena di lunghezza n .

The unit groups of semisimple group algebras of some non-metabelian groups of order 144

Gaurav Mittal, Rajendra K. Sharma (2023)

Mathematica Bohemica

Similarity:

We consider all the non-metabelian groups G of order 144 that have exponent either 36 or 72 and deduce the unit group U ( 𝔽 q G ) of semisimple group algebra 𝔽 q G . Here, q denotes the power of a prime, i.e., q = p r for p prime and a positive integer r . Up to isomorphism, there are 6 groups of order 144 that have exponent either 36 or 72 . Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order 144 that are a direct product of two...

-homomorphisms of Lie algebras

Aleksander A. Lashkhi (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Si studiano gli omomorfismi reticolari ( -omomorfismi) di algebre di Lie sopra anelli commutativi con unità. Le algebre di Lie sopra un campo e le p -algebre di Lie non ammettono -omomorfismi propri. Si assegnano condizioni necessarie e sufficienti affinchè un'algebra di Lie periodica o mista possieda un « -omomorfismo su una catena di lunghezza n .