The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Subfields of henselian valued fields”

Class groups of large ranks in biquadratic fields

Mahesh Kumar Ram (2024)

Czechoslovak Mathematical Journal

Similarity:

For any integer n > 1 , we provide a parametric family of biquadratic fields with class groups having n -rank at least 2. Moreover, in some cases, the n -rank is bigger than 4.

Isomorphisms of algebraic number fields

Mark van Hoeij, Vivek Pal (2012)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let ( α ) and ( β ) be algebraic number fields. We describe a new method to find (if they exist) all isomorphisms, ( β ) ( α ) . The algorithm is particularly efficient if there is only one isomorphism.

Unit vector fields on antipodally punctured spheres: big index, big volume

Fabiano G. B. Brito, Pablo M. Chacón, David L. Johnson (2008)

Bulletin de la Société Mathématique de France

Similarity:

We establish in this paper a lower bound for the volume of a unit vector field v defined on 𝐒 n { ± x } , n = 2 , 3 . This lower bound is related to the sum of the absolute values of the indices of v at x and - x .

On the structure of the Galois group of the Abelian closure of a number field

Georges Gras (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

From a paper by A. Angelakis and P. Stevenhagen on the determination of a family of imaginary quadratic fields K having isomorphic absolute Abelian Galois groups A K , we study any such issue for arbitrary number fields K . We show that this kind of property is probably not easily generalizable, apart from imaginary quadratic fields, because of some p -adic obstructions coming from the global units of K . By restriction to the p -Sylow subgroups of A K and assuming the Leopoldt conjecture we...

On the strongly ambiguous classes of some biquadratic number fields

Abdelmalek Azizi, Abdelkader Zekhnini, Mohammed Taous (2016)

Mathematica Bohemica

Similarity:

We study the capitulation of 2 -ideal classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields 𝕜 = ( 2 p q , i ) , where i = - 1 and p - q 1 ( mod 4 ) are different primes. For each of the three quadratic extensions 𝕂 / 𝕜 inside the absolute genus field 𝕜 ( * ) of 𝕜 , we determine a fundamental system of units and then compute the capitulation kernel of 𝕂 / 𝕜 . The generators of the groups Am s ( 𝕜 / F ) and Am ( 𝕜 / F ) are also determined from which we deduce that 𝕜 ( * ) is smaller than the relative genus field ( 𝕜 / ( i ) ) * . Then we prove...

Linear extenders and the Axiom of Choice

Marianne Morillon (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In set theory without the Axiom of Choice ZF, we prove that for every commutative field 𝕂 , the following statement 𝐃 𝕂 : “On every non null 𝕂 -vector space, there exists a non null linear form” implies the existence of a “ 𝕂 -linear extender” on every vector subspace of a 𝕂 -vector space. This solves a question raised in Morillon M., Linear forms and axioms of choice, Comment. Math. Univ. Carolin. 50 (2009), no. 3, 421-431. In the second part of the paper, we generalize our results in the case...

On the 2 -class group of some number fields with large degree

Mohamed Mahmoud Chems-Eddin, Abdelmalek Azizi, Abdelkader Zekhnini (2021)

Archivum Mathematicum

Similarity:

Let d be an odd square-free integer, m 3 any integer and L m , d : = ( ζ 2 m , d ) . In this paper, we shall determine all the fields L m , d having an odd class number. Furthermore, using the cyclotomic 2 -extensions of some number fields, we compute the rank of the 2 -class group of L m , d whenever the prime divisors of d are congruent to 3 or 5 ( mod 8 ) .

The distribution of second p -class groups on coclass graphs

Daniel C. Mayer (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

General concepts and strategies are developed for identifying the isomorphism type of the second p -class group G = Gal ( F p 2 ( K ) | K ) , that is the Galois group of the second Hilbert p -class field F p 2 ( K ) , of a number field K , for a prime p . The isomorphism type determines the position of G on one of the coclass graphs 𝒢 ( p , r ) , r 0 , in the sense of Eick, Leedham-Green, and Newman. It is shown that, for special types of the base field K and of its p -class group Cl p ( K ) , the position of G is restricted to certain admissible branches...