Displaying similar documents to “A characterization of Sobolev spaces via local derivatives”

On some subspaces of Morrey-Sobolev spaces and boundedness of Riesz integrals

Mouhamadou Dosso, Ibrahim Fofana, Moumine Sanogo (2013)

Annales Polonici Mathematici

Similarity:

For 1 ≤ q ≤ α ≤ p ≤ ∞, ( L q , l p ) α is a complex Banach space which is continuously included in the Wiener amalgam space ( L q , l p ) and contains the Lebesgue space L α . We study the closure ( L q , l p ) c , 0 α in ( L q , l p ) α of the space of test functions (infinitely differentiable and with compact support in d ) and obtain norm inequalities for Riesz potential operators and Riesz transforms in these spaces. We also introduce the Sobolev type space W ¹ ( ( L q , l p ) α ) (a subspace of a Morrey-Sobolev space, but a superspace of the classical Sobolev space...

Remarks on the Bourgain-Brezis-Mironescu Approach to Sobolev Spaces

B. Bojarski (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

For a function f L l o c p ( ) the notion of p-mean variation of order 1, p ( f , ) is defined. It generalizes the concept of F. Riesz variation of functions on the real line ℝ¹ to ℝⁿ, n > 1. The characterisation of the Sobolev space W 1 , p ( ) in terms of p ( f , ) is directly related to the characterisation of W 1 , p ( ) by Lipschitz type pointwise inequalities of Bojarski, Hajłasz and Strzelecki and to the Bourgain-Brezis-Mironescu approach.

Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces

Yoshihiro Mizuta, Tetsu Shimomura (2023)

Czechoslovak Mathematical Journal

Similarity:

Our aim is to establish Sobolev type inequalities for fractional maximal functions M , ν f and Riesz potentials I , α f in weighted Morrey spaces of variable exponent on the half space . We also obtain Sobolev type inequalities for a C 1 function on . As an application, we obtain Sobolev type inequality for double phase functionals with variable exponents Φ ( x , t ) = t p ( x ) + ( b ( x ) t ) q ( x ) , where p ( · ) and q ( · ) satisfy log-Hölder conditions, p ( x ) < q ( x ) for x , and b ( · ) is nonnegative and Hölder continuous of order θ ( 0 , 1 ] .

Weighted local Orlicz-Hardy spaces with applications to pseudo-differential operators

Dachun Yang, Sibei Yang

Similarity:

Let Φ be a concave function on (0,∞) of strictly critical lower type index p Φ ( 0 , 1 ] and ω A l o c ( ) (the class of local weights introduced by V. S. Rychkov). We introduce the weighted local Orlicz-Hardy space h ω Φ ( ) via the local grand maximal function. Let ρ ( t ) t - 1 / Φ - 1 ( t - 1 ) for all t ∈ (0,∞). We also introduce the BMO-type space b m o ρ , ω ( ) and establish the duality between h ω Φ ( ) and b m o ρ , ω ( ) . Characterizations of h ω Φ ( ) , including the atomic characterization, the local vertical and the local nontangential maximal function characterizations, are...

Some Hölder-logarithmic estimates on Hardy-Sobolev spaces

Imed Feki, Ameni Massoudi (2024)

Czechoslovak Mathematical Journal

Similarity:

We prove some optimal estimates of Hölder-logarithmic type in the Hardy-Sobolev spaces H k , p ( G ) , where k * , 1 p and G is either the open unit disk 𝔻 or the annular domain G s , 0 < s < 1 of the complex space . More precisely, we study the behavior on the interior of G of any function f belonging to the unit ball of the Hardy-Sobolev spaces H k , p ( G ) from its behavior on any open connected subset I of the boundary G of G with respect to the L 1 -norm. Our results can be viewed as an improvement and generalization of...

Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces

Xuefang Yan (2015)

Czechoslovak Mathematical Journal

Similarity:

Let ( X , d , μ ) be a metric measure space endowed with a distance d and a nonnegative Borel doubling measure μ . Let L be a non-negative self-adjoint operator of order m on L 2 ( X ) . Assume that the semigroup e - t L generated by L satisfies the Davies-Gaffney estimate of order m and L satisfies the Plancherel type estimate. Let H L p ( X ) be the Hardy space associated with L . We show the boundedness of Stein’s square function 𝒢 δ ( L ) arising from Bochner-Riesz means associated to L from Hardy spaces H L p ( X ) to L p ( X ) , and also study...

Functions with prescribed singularities

Giovanni Alberti, S. Baldo, G. Orlandi (2003)

Journal of the European Mathematical Society

Similarity:

The distributional k -dimensional Jacobian of a map u in the Sobolev space W 1 , k 1 which takes values in the sphere S k 1 can be viewed as the boundary of a rectifiable current of codimension k carried by (part of) the singularity of u which is topologically relevant. The main purpose of this paper is to investigate the range of the Jacobian operator; in particular, we show that any boundary M of codimension k can be realized as Jacobian of a Sobolev map valued in S k 1 . In case M is polyhedral, the...

Fourier approximation and embeddings of Sobolev spaces

D. E. Edmunds, V. B. Moscatelli

Similarity:

CONTENTSIntroduction............................................................................................................ 51. Preliminaries............................................................................................................. 82. Embedding into W m , p ( Ω ) into L S ( Ω ) (n>1).......................................... 103. The case n = 1.......................................................................................................... 284. Embedding W m , p ( Ω ) into L φ ( Ω ) ...............................................................

An interpolatory estimate for the UMD-valued directional Haar projection

Richard Lechner

Similarity:

We prove an interpolatory estimate linking the directional Haar projection P ( ε ) to the Riesz transform in the context of Bochner-Lebesgue spaces L p ( ; X ) , 1 < p < ∞, provided X is a UMD-space. If ε i = 1 , the result is the inequality | | P ( ε ) u | | L p ( ; X ) C | | u | | L p ( ; X ) 1 / | | R i u | | L p ( ; X ) 1 - 1 / , (1) where the constant C depends only on n, p, the UMD-constant of X and the Rademacher type of L p ( ; X ) . In order to obtain the interpolatory result (1) we analyze stripe operators S λ , λ ≥ 0, which are used as basic building blocks to dominate the directional Haar projection....

Some estimates for commutators of Riesz transform associated with Schrödinger type operators

Yu Liu, Jing Zhang, Jie-Lai Sheng, Li-Juan Wang (2016)

Czechoslovak Mathematical Journal

Similarity:

Let 1 = - Δ + V be a Schrödinger operator and let 2 = ( - Δ ) 2 + V 2 be a Schrödinger type operator on n ( n 5 ) , where V 0 is a nonnegative potential belonging to certain reverse Hölder class B s for s n / 2 . The Hardy type space H 2 1 is defined in terms of the maximal function with respect to the semigroup { e - t 2 } and it is identical to the Hardy space H 1 1 established by Dziubański and Zienkiewicz. In this article, we prove the L p -boundedness of the commutator b = b f - ( b f ) generated by the Riesz transform = 2 2 - 1 / 2 , where b BMO θ ( ρ ) , which is larger...

Further characterizations of Sobolev spaces

Hoai-Minh Nguyen (2008)

Journal of the European Mathematical Society

Similarity:

Let ( F n ) n be a sequence of non-decreasing functions from [ 0 , + ) into [ 0 , + ) . Under some suitable hypotheses of ( F n ) n , we will prove that if g L p ( N ) , 1 < p < + , satisfies lim inf n N N F n ( | g ( x ) - g ( y ) | ) / | x - y | N + p d x d y < + , then g W 1 , p ( N ) and moreover lim n N N F n ( | g ( x ) - g ( y ) | ) / | x - y | N + p d x d y = K N , p N | g ( x ) | p d x , where K N , p is a positive constant depending only on N and p . This extends some results in J. Bourgain and H-M. Nguyen [A new characterization of Sobolev spaces, C. R. Acad Sci. Paris, Ser. 343 (2006) 75-80] and H-M. Nguyen [Some new characterizations of Sobolev spaces, J. Funct. Anal. 237 (2006) 689-720]. We also present some...

A new function space and applications

Jean Bourgain, Haïm Brezis, Petru Mironescu (2015)

Journal of the European Mathematical Society

Similarity:

We define a new function space B , which contains in particular BMO, BV, and W 1 / p , p , 1 < p < . We investigate its embedding into Lebesgue and Marcinkiewicz spaces. We present several inequalities involving L p norms of integer-valued functions in B . We introduce a significant closed subspace, B 0 , of B , containing in particular VMO and W 1 / p , p , 1 p < . The above mentioned estimates imply in particular that integer-valued functions belonging to B 0 are necessarily constant. This framework provides a “common roof”...

Approximate and L p Peano derivatives of nonintegral order

J. Marshall Ash, Hajrudin Fejzić (2005)

Studia Mathematica

Similarity:

Let n be a nonnegative integer and let u ∈ (n,n+1]. We say that f is u-times Peano bounded in the approximate (resp. L p , 1 ≤ p ≤ ∞) sense at x m if there are numbers f α ( x ) , |α| ≤ n, such that f ( x + h ) - | α | n f α ( x ) h α / α ! is O ( h u ) in the approximate (resp. L p ) sense as h → 0. Suppose f is u-times Peano bounded in either the approximate or L p sense at each point of a bounded measurable set E. Then for every ε > 0 there is a perfect set Π ⊂ E and a smooth function g such that the Lebesgue measure of E∖Π is less than ε and...

The σ -property in C ( X )

Anthony W. Hager (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The σ -property of a Riesz space (real vector lattice) B is: For each sequence { b n } of positive elements of B , there is a sequence { λ n } of positive reals, and b B , with λ n b n b for each n . This condition is involved in studies in Riesz spaces of abstract Egoroff-type theorems, and of the countable lifting property. Here, we examine when “ σ ” obtains for a Riesz space of continuous real-valued functions C ( X ) . A basic result is: For discrete X , C ( X ) has σ iff the cardinal | X | < 𝔟 , Rothberger’s bounding number. Consequences...

A complete characterization of R-sets in the theory of differentiation of integrals

G. A. Karagulyan (2007)

Studia Mathematica

Similarity:

Let s be the family of open rectangles in the plane ℝ² with a side of angle s to the x-axis. We say that a set S of directions is an R-set if there exists a function f ∈ L¹(ℝ²) such that the basis s differentiates the integral of f if s ∉ S, and D ̅ s f ( x ) = l i m s u p d i a m ( R ) 0 , x R s | R | - 1 R f = almost everywhere if s ∈ S. If the condition D ̅ s f ( x ) = holds on a set of positive measure (instead of a.e.) we say that S is a WR-set. It is proved that S is an R-set (resp. a WR-set) if and only if it is a G δ (resp. a G δ σ ).