Displaying similar documents to “Time-dependent Schrödinger perturbations of transition densities”

A spatially sixth-order hybrid L 1 -CCD method for solving time fractional Schrödinger equations

Chun-Hua Zhang, Jun-Wei Jin, Hai-Wei Sun, Qin Sheng (2021)

Applications of Mathematics

Similarity:

We consider highly accurate schemes for nonlinear time fractional Schrödinger equations (NTFSEs). While an L 1 strategy is employed for approximating the Caputo fractional derivative in the temporal direction, compact CCD finite difference approaches are incorporated in the space. A highly effective hybrid L 1 -CCD method is implemented successfully. The accuracy of this linearized scheme is order six in space, and order 2 - γ in time, where 0 < γ < 1 is the order of the Caputo fractional derivative...

Existence and multiplicity results for a nonlinear stationary Schrödinger equation

Danila Sandra Moschetto (2010)

Annales Polonici Mathematici

Similarity:

We revisit Kristály’s result on the existence of weak solutions of the Schrödinger equation of the form -Δu + a(x)u = λb(x)f(u), x N , u H ¹ ( N ) , where λ is a positive parameter, a and b are positive functions, while f : is sublinear at infinity and superlinear at the origin. In particular, by using Ricceri’s recent three critical points theorem, we show that, under the same hypotheses, a much more precise conclusion can be obtained.

On the equivalence of Green functions for general Schrödinger operators on a half-space

Abdoul Ifra, Lotfi Riahi (2004)

Annales Polonici Mathematici

Similarity:

We consider the general Schrödinger operator L = d i v ( A ( x ) x ) - μ on a half-space in ℝⁿ, n ≥ 3. We prove that the L-Green function G exists and is comparable to the Laplace-Green function G Δ provided that μ is in some class of signed Radon measures. The result extends the one proved on the half-plane in [9] and covers the case of Schrödinger operators with potentials in the Kato class at infinity K considered by Zhao and Pinchover. As an application we study the cone L ( ) of all positive L-solutions continuously...

Spectral gap lower bound for the one-dimensional fractional Schrödinger operator in the interval

Kamil Kaleta (2012)

Studia Mathematica

Similarity:

We prove a uniform lower bound for the difference λ₂ - λ₁ between the first two eigenvalues of the fractional Schrödinger operator ( - Δ ) α / 2 + V , α ∈ (1,2), with a symmetric single-well potential V in a bounded interval (a,b), which is related to the Feynman-Kac semigroup of the symmetric α-stable process killed upon leaving (a,b). “Uniform” means that the positive constant C α appearing in our estimate λ - λ C α ( b - a ) - α is independent of the potential V. In the general case of α ∈ (0,2), we also find a uniform lower...

Sharp trace asymptotics for a class of 2 D -magnetic operators

Horia D. Cornean, Søren Fournais, Rupert L. Frank, Bernard Helffer (2013)

Annales de l’institut Fourier

Similarity:

In this paper we prove a two-term asymptotic formula for the spectral counting function for a 2 D magnetic Schrödinger operator on a domain (with Dirichlet boundary conditions) in a semiclassical limit and with strong magnetic field. By scaling, this is equivalent to a thermodynamic limit of a 2 D Fermi gas submitted to a constant external magnetic field. The original motivation comes from a paper by H. Kunz in which he studied, among other things, the boundary correction for...

On the number of positive solutions of singularly perturbed 1D nonlinear Schrödinger equations

Patricio Felmer, Salomé Martínez, Kazunaga Tanaka (2006)

Journal of the European Mathematical Society

Similarity:

We study singularly perturbed 1D nonlinear Schrödinger equations (1.1). When V ( x ) has multiple critical points, (1.1) has a wide variety of positive solutions for small ε and the number of positive solutions increases to as ε 0 . We give an estimate of the number of positive solutions whose growth order depends on the number of local maxima of V ( x ) . Envelope functions or equivalently adiabatic profiles of high frequency solutions play an important role in the proof.

Upper bounds for the density of solutions to stochastic differential equations driven by fractional brownian motions

Fabrice Baudoin, Cheng Ouyang, Samy Tindel (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In this paper we study upper bounds for the density of solution to stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H g t ; 1 / 3 . We show that under some geometric conditions, in the regular case H g t ; 1 / 2 , the density of the solution satisfies the log-Sobolev inequality, the Gaussian concentration inequality and admits an upper Gaussian bound. In the rough case H g t ; 1 / 3 and under the same geometric conditions, we show that the density of the solution is smooth and...

Waves in Honeycomb Structures

Charles L. Fefferman, Michael I. Weinstein (2012)

Journées Équations aux dérivées partielles

Similarity:

We review recent work of the authors on the non-relativistic Schrödinger equation with a honeycomb lattice potential, V . In particular, we summarize results on (i) the existence of Dirac points, conical singularities in dispersion surfaces of H V = - Δ + V and (ii) the two-dimensional Dirac equations, as the large (but finite) time effective system of equations governing the evolution e - i H V t ψ 0 , for data ψ 0 , which is spectrally localized near a Dirac point. We conclude with a formal derivation and discussion...

Global well-posedness for the Klein-Gordon-Schrödinger system with higher order coupling

Agus Leonardi Soenjaya (2022)

Mathematica Bohemica

Similarity:

Global well-posedness for the Klein-Gordon-Schrödinger system with generalized higher order coupling, which is a system of PDEs in two variables arising from quantum physics, is proven. It is shown that the system is globally well-posed in ( u , n ) L 2 × L 2 under some conditions on the nonlinearity (the coupling term), by using the L 2 conservation law for u and controlling the growth of n via the estimates in the local theory. In particular, this extends the well-posedness results for such a system in...

A variational analysis of a gauged nonlinear Schrödinger equation

Alessio Pomponio, David Ruiz (2015)

Journal of the European Mathematical Society

Similarity:

This paper is motivated by a gauged Schrödinger equation in dimension 2 including the so-called Chern-Simons term. The study of radial stationary states leads to the nonlocal problem: - Δ u ( x ) + ω + h 2 ( | x | ) | x | 2 + | x | + h ( s ) s u 2 ( s ) d s u ( x ) = | u ( x ) | p - 1 u ( x ) , where h ( r ) = 1 2 0 r s u 2 ( s ) d s . This problem is the Euler-Lagrange equation of a certain energy functional. In this paper the study of the global behavior of such functional is completed. We show that for p ( 1 , 3 ) , the functional may be bounded from below or not, depending on ω . Quite surprisingly, the threshold value for ω is explicit....

Optimal potentials for Schrödinger operators

Giuseppe Buttazzo, Augusto Gerolin, Berardo Ruffini, Bozhidar Velichkov (2014)

Journal de l’École polytechnique — Mathématiques

Similarity:

We consider the Schrödinger operator - Δ + V ( x ) on H 0 1 ( Ω ) , where Ω is a given domain of d . Our goal is to study some optimization problems where an optimal potential V 0 has to be determined in some suitable admissible classes and for some suitable optimization criteria, like the energy or the Dirichlet eigenvalues.

Fractional Laplacian with singular drift

Tomasz Jakubowski (2011)

Studia Mathematica

Similarity:

For α ∈ (1,2) we consider the equation t u = Δ α / 2 u + b · u , where b is a time-independent, divergence-free singular vector field of the Morrey class M 1 - α . We show that if the Morrey norm | | b | | M 1 - α is sufficiently small, then the fundamental solution is globally in time comparable with the density of the isotropic stable process.

H p spaces associated with Schrödinger operators with potentials from reverse Hölder classes

Jacek Dziubański, Jacek Zienkiewicz (2003)

Colloquium Mathematicae

Similarity:

Let A = -Δ + V be a Schrödinger operator on d , d ≥ 3, where V is a nonnegative potential satisfying the reverse Hölder inequality with an exponent q > d/2. We say that f is an element of H A p if the maximal function s u p t > 0 | T t f ( x ) | belongs to L p ( d ) , where T t t > 0 is the semigroup generated by -A. It is proved that for d/(d+1) < p ≤ 1 the space H A p admits a special atomic decomposition.

Hardy spaces H¹ for Schrödinger operators with certain potentials

Jacek Dziubański, Jacek Zienkiewicz (2004)

Studia Mathematica

Similarity:

Let K t t > 0 be the semigroup of linear operators generated by a Schrödinger operator -L = Δ - V with V ≥ 0. We say that f belongs to H ¹ L if | | s u p t > 0 | K t f ( x ) | | | L ¹ ( d x ) < . We state conditions on V and K t which allow us to give an atomic characterization of the space H ¹ L .

Density of some sequences modulo 1

Artūras Dubickas (2012)

Colloquium Mathematicae

Similarity:

Recently, Cilleruelo, Kumchev, Luca, Rué and Shparlinski proved that for each integer a ≥ 2 the sequence of fractional parts a / n n = 1 is everywhere dense in the interval [0,1]. We prove a similar result for all Pisot numbers and Salem numbers α and show that for each c > 0 and each sufficiently large N, every subinterval of [0,1] of length c N - 0 . 475 contains at least one fractional part Q(αⁿ)/n, where Q is a nonconstant polynomial in ℤ[z] and n is an integer satisfying 1 ≤ n ≤ N.

Semiclassical measures for the Schrödinger equation on the torus

Nalini Anantharaman, Fabricio Macià (2014)

Journal of the European Mathematical Society

Similarity:

In this article, the structure of semiclassical measures for solutions to the linear Schrödinger equation on the torus is analysed. We show that the disintegration of such a measure on every invariant lagrangian torus is absolutely continuous with respect to the Lebesgue measure. We obtain an expression of the Radon-Nikodym derivative in terms of the sequence of initial data and show that it satisfies an explicit propagation law. As a consequence, we also prove an observability inequality,...

Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in 3

M. Burak Erdoğan, Michael Goldberg, Wilhelm Schlag (2008)

Journal of the European Mathematical Society

Similarity:

We present a novel approach for bounding the resolvent of H = - Δ + i ( A · + · A ) + V = : - Δ + L 1 for large energies. It is shown here that there exist a large integer m and a large number λ 0 so that relative to the usual weighted L 2 -norm, ( L ( - Δ + ( λ + i 0 ) ) - 1 ) m < 1 2 2 for all λ > λ 0 . This requires suitable decay and smoothness conditions on A , V . The estimate (2) is trivial when A = 0 , but difficult for large A since the gradient term exactly cancels the natural decay of the free resolvent. To obtain (2), we introduce a conical decomposition of the resolvent and...

On the boundary convergence of solutions to the Hermite-Schrödinger equation

Peter Sjögren, J. L. Torrea (2010)

Colloquium Mathematicae

Similarity:

In the half-space d × , consider the Hermite-Schrödinger equation i∂u/∂t = -Δu + |x|²u, with given boundary values on d . We prove a formula that links the solution of this problem to that of the classical Schrödinger equation. It shows that mixed norm estimates for the Hermite-Schrödinger equation can be obtained immediately from those known in the classical case. In one space dimension, we deduce sharp pointwise convergence results at the boundary by means of this link.

Finite time asymptotics of fluid and ruin models: multiplexed fractional Brownian motions case

Krzysztof Dębicki, Grzegorz Sikora (2011)

Applicationes Mathematicae

Similarity:

Motivated by applications in queueing fluid models and ruin theory, we analyze the asymptotics of ( s u p t [ 0 , T ] ( i = 1 n λ i B H i ( t ) - c t ) > u ) , where B H i ( t ) : t 0 , i = 1,...,n, are independent fractional Brownian motions with Hurst parameters H i ( 0 , 1 ] and λ₁,...,λₙ > 0. The asymptotics takes one of three different qualitative forms, depending on the value of m i n i = 1 , . . . , n H i .

Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity

Antonio Ambrosetti, Veronica Felli, Andrea Malchiodi (2005)

Journal of the European Mathematical Society

Similarity:

We deal with a class on nonlinear Schrödinger equations (NLS) with potentials V ( x ) | x | α , 0 < α < 2 , and K ( x ) | x | β , β > 0 . Working in weighted Sobolev spaces, the existence of ground states v ε belonging to W 1 , 2 ( N ) is proved under the assumption that σ < p < ( N + 2 ) / ( N 2 ) for some σ = σ N , α , β . Furthermore, it is shown that v ε are spikes concentrating at a minimum point of 𝒜 = V θ K 2 / ( p 1 ) , where θ = ( p + 1 ) / ( p 1 ) 1 / 2 .

On the strong Brillinger-mixing property of α -determinantal point processes and some applications

Lothar Heinrich (2016)

Applications of Mathematics

Similarity:

First, we derive a representation formula for all cumulant density functions in terms of the non-negative definite kernel function C ( x , y ) defining an α -determinantal point process (DPP). Assuming absolute integrability of the function C 0 ( x ) = C ( o , x ) , we show that a stationary α -DPP with kernel function C 0 ( x ) is “strongly” Brillinger-mixing, implying, among others, that its tail- σ -field is trivial. Second, we use this mixing property to prove rates of normal convergence for shot-noise processes and sketch...

On Dirichlet-Schrödinger operators with strong potentials

Gabriele Grillo (1995)

Studia Mathematica

Similarity:

We consider Schrödinger operators H = -Δ/2 + V (V≥0 and locally bounded) with Dirichlet boundary conditions, on any open and connected subdomain D n which either is bounded or satisfies the condition d ( x , D c ) 0 as |x| → ∞. We prove exponential decay at the boundary of all the eigenfunctions of H whenever V diverges sufficiently fast at the boundary ∂D, in the sense that d ( x , D C ) 2 V ( x ) as d ( x , D C ) 0 . We also prove bounds from above and below for Tr(exp[-tH]), and in particular we give criterions for the finiteness of...

Global existence of solutions to Schrödinger equations on compact riemannian manifolds below H 1

Sijia Zhong (2010)

Bulletin de la Société Mathématique de France

Similarity:

In this paper, we will study global well-posedness for the cubic defocusing nonlinear Schrödinger equations on the compact Riemannian manifold without boundary, below the energy space, i.e. s &lt; 1 , under some bilinear Strichartz assumption. We will find some s ˜ &lt; 1 , such that the solution is global for s &gt; s ˜ .

Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation

Marcel Guardia, Vadim Kaloshin (2015)

Journal of the European Mathematical Society

Similarity:

We consider the cubic defocusing nonlinear Schrödinger equation in the two dimensional torus. Fix s > 1 . Recently Colliander, Keel, Staffilani, Tao and Takaoka proved the existence of solutions with s -Sobolev norm growing in time. We establish the existence of solutions with polynomial time estimates. More exactly, there is c > 0 such that for any 𝒦 1 we find a solution u and a time T such that u ( T ) H s 𝒦 u ( 0 ) H s . Moreover, the time T satisfies the polynomial bound 0 < T < 𝒦 C .