Displaying similar documents to “The one-sided ergodic Hilbert transform in Banach spaces”

Norm convergence of some power series of operators in L p with applications in ergodic theory

Christophe Cuny (2010)

Studia Mathematica

Similarity:

Let X be a closed subspace of L p ( μ ) , where μ is an arbitrary measure and 1 < p < ∞. Let U be an invertible operator on X such that s u p n | | U | | < . Motivated by applications in ergodic theory, we obtain (optimal) conditions for the convergence of series like n 1 ( U f ) / n 1 - α , 0 ≤ α < 1, in terms of | | f + + U n - 1 f | | p , generalizing results for unitary (or normal) operators in L²(μ). The proofs make use of the spectral integration initiated by Berkson and Gillespie and, more particularly, of results from a paper by Berkson-Bourgain-Gillespie. ...

On the ergodic decomposition for a cocycle

Jean-Pierre Conze, Albert Raugi (2009)

Colloquium Mathematicae

Similarity:

Let (X,,μ,τ) be an ergodic dynamical system and φ be a measurable map from X to a locally compact second countable group G with left Haar measure m G . We consider the map τ φ defined on X × G by τ φ : ( x , g ) ( τ x , φ ( x ) g ) and the cocycle ( φ ) n generated by φ. Using a characterization of the ergodic invariant measures for τ φ , we give the form of the ergodic decomposition of μ ( d x ) m G ( d g ) or more generally of the τ φ -invariant measures μ χ ( d x ) χ ( g ) m G ( d g ) , where μ χ ( d x ) is χ∘φ-conformal for an exponential χ on G.

Moving averages

S. V. Butler, J. M. Rosenblatt (2008)

Colloquium Mathematicae

Similarity:

In ergodic theory, certain sequences of averages A k f may not converge almost everywhere for all f ∈ L¹(X), but a sufficiently rapidly growing subsequence A m k f of these averages will be well behaved for all f. The order of growth of this subsequence that is sufficient is often hyperexponential, but not necessarily so. For example, if the averages are A k f ( x ) = 1 / ( 2 k ) j = 4 k + 1 4 k + 2 k f ( T j x ) , then the subsequence A k ² f will not be pointwise good even on L , but the subsequence A 2 k f will be pointwise good on L¹. Understanding when the hyperexponential...

Multiparameter ergodic Cesàro-α averages

A. L. Bernardis, R. Crescimbeni, C. Ferrari Freire (2015)

Colloquium Mathematicae

Similarity:

Net (X,ℱ,ν) be a σ-finite measure space. Associated with k Lamperti operators on L p ( ν ) , T , . . . , T k , n ̅ = ( n , . . . , n k ) k and α ̅ = ( α , . . . , α k ) with 0 < α j 1 , we define the ergodic Cesàro-α̅ averages n ̅ , α ̅ f = 1 / ( j = 1 k A n j α j ) i k = 0 n k i = 0 n j = 1 k A n j - i j α j - 1 T k i k T i f . For these averages we prove the almost everywhere convergence on X and the convergence in the L p ( ν ) norm, when n , . . . , n k independently, for all f L p ( d ν ) with p > 1/α⁎ where α = m i n 1 j k α j . In the limit case p = 1/α⁎, we prove that the averages n ̅ , α ̅ f converge almost everywhere on X for all f in the Orlicz-Lorentz space Λ ( 1 / α , φ m - 1 ) with φ ( t ) = t ( 1 + l o g t ) m . To obtain the result in the limit case we need...

Transference of weak type bounds of multiparameter ergodic and geometric maximal operators

Paul Hagelstein, Alexander Stokolos (2012)

Fundamenta Mathematicae

Similarity:

Let U , . . . , U d be a non-periodic collection of commuting measure preserving transformations on a probability space (Ω,Σ,μ). Also let Γ be a nonempty subset of d and the associated collection of rectangular parallelepipeds in d with sides parallel to the axes and dimensions of the form n × × n d with ( n , . . . , n d ) Γ . The associated multiparameter geometric and ergodic maximal operators M and M Γ are defined respectively on L ¹ ( d ) and L¹(Ω) by M g ( x ) = s u p x R 1 / | R | R | g ( y ) | d y and M Γ f ( ω ) = s u p ( n , . . . , n d ) Γ 1 / n n d j = 0 n - 1 j d = 0 n d - 1 | f ( U j U d j d ω ) | . Given a Young function Φ, it is shown that M satisfies the weak type estimate ...

On the convergence to 0 of mₙξmod 1

Bassam Fayad, Jean-Paul Thouvenot (2014)

Acta Arithmetica

Similarity:

We show that for any irrational number α and a sequence m l l of integers such that l i m l | | | m l α | | | = 0 , there exists a continuous measure μ on the circle such that l i m l | | | m l θ | | | d μ ( θ ) = 0 . This implies that any rigidity sequence of any ergodic transformation is a rigidity sequence for some weakly mixing dynamical system. On the other hand, we show that for any α ∈ ℝ - ℚ, there exists a sequence m l l of integers such that | | | m l α | | | 0 and such that m l θ [ 1 ] is dense on the circle if and only if θ ∉ ℚα + ℚ.

On the (C,α) Cesàro bounded operators

Elmouloudi Ed-dari (2004)

Studia Mathematica

Similarity:

For a given linear operator T in a complex Banach space X and α ∈ ℂ with ℜ (α) > 0, we define the nth Cesàro mean of order α of the powers of T by M α = ( A α ) - 1 k = 0 n A n - k α - 1 T k . For α = 1, we find M ¹ = ( n + 1 ) - 1 k = 0 n T k , the usual Cesàro mean. We give necessary and sufficient conditions for a (C,α) bounded operator to be (C,α) strongly (weakly) ergodic.

Marcinkiewicz multipliers of higher variation and summability of operator-valued Fourier series

Earl Berkson (2014)

Studia Mathematica

Similarity:

Let f V r ( ) r ( ) , where, for 1 ≤ r < ∞, V r ( ) (resp., r ( ) ) denotes the class of functions (resp., bounded functions) g: → ℂ such that g has bounded r-variation (resp., uniformly bounded r-variations) on (resp., on the dyadic arcs of ). In the author’s recent article [New York J. Math. 17 (2011)] it was shown that if is a super-reflexive space, and E(·): ℝ → () is the spectral decomposition of a trigonometrically well-bounded operator U ∈ (), then over a suitable non-void open interval of r-values,...

On left ϕ -biflat Banach algebras

Amir Sahami, Mehdi Rostami, Abdolrasoul Pourabbas (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study the notion of left ϕ -biflatness for Segal algebras and semigroup algebras. We show that the Segal algebra S ( G ) is left ϕ -biflat if and only if G is amenable. Also we characterize left ϕ -biflatness of semigroup algebra l 1 ( S ) in terms of biflatness, when S is a Clifford semigroup.

Operator theoretic properties of semigroups in terms of their generators

S. Blunck, L. Weis (2001)

Studia Mathematica

Similarity:

Let ( T t ) be a C₀ semigroup with generator A on a Banach space X and let be an operator ideal, e.g. the class of compact, Hilbert-Schmidt or trace class operators. We show that the resolvent R(λ,A) of A belongs to if and only if the integrated semigroup S t : = 0 t T s d s belongs to . For analytic semigroups, S t implies T t , and in this case we give precise estimates for the growth of the -norm of T t (e.g. the trace of T t ) in terms of the resolvent growth and the imbedding D(A) ↪ X.

On the continuity of the elements of the Ellis semigroup and other properties

Salvador García-Ferreira, Yackelin Rodríguez-López, Carlos Uzcátegui (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We consider discrete dynamical systems whose phase spaces are compact metrizable countable spaces. In the first part of the article, we study some properties that guarantee the continuity of all functions of the corresponding Ellis semigroup. For instance, if every accumulation point of X is fixed, we give a necessary and sufficient condition on a point a X ' in order that all functions of the Ellis semigroup E ( X , f ) be continuous at the given point a . In the second part, we consider transitive...

Convergence of greedy approximation I. General systems

S. V. Konyagin, V. N. Temlyakov (2003)

Studia Mathematica

Similarity:

We consider convergence of thresholding type approximations with regard to general complete minimal systems eₙ in a quasi-Banach space X. Thresholding approximations are defined as follows. Let eₙ* ⊂ X* be the conjugate (dual) system to eₙ; then define for ε > 0 and x ∈ X the thresholding approximations as T ε ( x ) : = j D ε ( x ) e * j ( x ) e j , where D ε ( x ) : = j : | e * j ( x ) | ε . We study a generalized version of T ε that we call the weak thresholding approximation. We modify the T ε ( x ) in the following way. For ε > 0, t ∈ (0,1) we set D t , ε ( x ) : = j : t ε | e * j ( x ) | < ε and consider...

Hilbert series of the Grassmannian and k -Narayana numbers

Lukas Braun (2019)

Communications in Mathematics

Similarity:

We compute the Hilbert series of the complex Grassmannian using invariant theoretic methods. This is made possible by showing that the denominator of the q -Hilbert series is a Vandermonde-like determinant. We show that the h -polynomial of the Grassmannian coincides with the k -Narayana polynomial. A simplified formula for the h -polynomial of Schubert varieties is given. Finally, we use a generalized hypergeometric Euler transform to find simplified formulae for the k -Narayana numbers,...

Pisier's inequality revisited

Tuomas Hytönen, Assaf Naor (2013)

Studia Mathematica

Similarity:

Given a Banach space X, for n ∈ ℕ and p ∈ (1,∞) we investigate the smallest constant ∈ (0,∞) for which every n-tuple of functions f₁,...,fₙ: -1,1ⁿ → X satisfies - 1 , 1 | | j = 1 n j f j ( ε ) | | p d μ ( ε ) p - 1 , 1 - 1 , 1 | | j = 1 n δ j Δ f j ( ε ) | | p d μ ( ε ) d μ ( δ ) , where μ is the uniform probability measure on the discrete hypercube -1,1ⁿ, and j j = 1 n and Δ = j = 1 n j are the hypercube partial derivatives and the hypercube Laplacian, respectively. Denoting this constant by p ( X ) , we show that p ( X ) k = 1 n 1 / k for every Banach space (X,||·||). This extends the classical Pisier inequality, which corresponds to the special...

Growth of semigroups in discrete and continuous time

Alexander Gomilko, Hans Zwart, Niels Besseling (2011)

Studia Mathematica

Similarity:

We show that the growth rates of solutions of the abstract differential equations ẋ(t) = Ax(t), ( t ) = A - 1 x ( t ) , and the difference equation x d ( n + 1 ) = ( A + I ) ( A - I ) - 1 x d ( n ) are closely related. Assuming that A generates an exponentially stable semigroup, we show that on a general Banach space the lowest growth rate of the semigroup ( e A - 1 t ) t 0 is O(∜t), and for ( ( A + I ) ( A - I ) - 1 ) it is O(∜n). The similarity in growth holds for all Banach spaces. In particular, for Hilbert spaces the best estimates are O(log(t)) and O(log(n)), respectively. Furthermore,...

Non supercyclic subsets of linear isometries on Banach spaces of analytic functions

Abbas Moradi, Karim Hedayatian, Bahram Khani Robati, Mohammad Ansari (2015)

Czechoslovak Mathematical Journal

Similarity:

Let X be a Banach space of analytic functions on the open unit disk and Γ a subset of linear isometries on X . Sufficient conditions are given for non-supercyclicity of Γ . In particular, we show that the semigroup of linear isometries on the spaces S p ( p > 1 ), the little Bloch space, and the group of surjective linear isometries on the big Bloch space are not supercyclic. Also, we observe that the groups of all surjective linear isometries on the Hardy space H p or the Bergman space L a p ( 1 < p < , p 2 )...

H calculus and dilatations

Andreas M. Fröhlich, Lutz Weis (2006)

Bulletin de la Société Mathématique de France

Similarity:

We characterise the boundedness of the H calculus of a sectorial operator in terms of dilation theorems. We show e. g. that if - A generates a bounded analytic C 0 semigroup ( T t ) on a UMD space, then the H calculus of A is bounded if and only if ( T t ) has a dilation to a bounded group on L 2 ( [ 0 , 1 ] , X ) . This generalises a Hilbert space result of C.LeMerdy. If X is an L p space we can choose another L p space in place of L 2 ( [ 0 , 1 ] , X ) .

Unicellularity of the multiplication operator on Banach spaces of formal power series

B. Yousefi (2001)

Studia Mathematica

Similarity:

Let β ( n ) n = 0 be a sequence of positive numbers and 1 ≤ p < ∞. We consider the space p ( β ) of all power series f ( z ) = n = 0 f ̂ ( n ) z such that n = 0 | f ̂ ( n ) | p | β ( n ) | p < . We give some sufficient conditions for the multiplication operator, M z , to be unicellular on the Banach space p ( β ) . This generalizes the main results obtained by Lu Fang [1].

On the H-property and rotundity of Cesàro direct sums of Banach spaces

Saard Youyen, Suthep Suantai (2008)

Banach Center Publications

Similarity:

In this paper, we define the direct sum ( i = 1 n X i ) c e s p of Banach spaces X₁,X₂,..., and Xₙ and consider it equipped with the Cesàro p-norm when 1 ≤ p < ∞. We show that ( i = 1 n X i ) c e s p has the H-property if and only if each X i has the H-property, and ( i = 1 n X i ) c e s p has the Schur property if and only if each X i has the Schur property. Moreover, we also show that ( i = 1 n X i ) c e s p is rotund if and only if each X i is rotund.

Pointwise convergence of nonconventional averages

I. Assani (2005)

Colloquium Mathematicae

Similarity:

We answer a question of H. Furstenberg on the pointwise convergence of the averages 1 / N n = 1 N U ( f · R ( g ) ) , where U and R are positive operators. We also study the pointwise convergence of the averages 1 / N n = 1 N f ( S x ) g ( R x ) when T and S are measure preserving transformations.

Example of a mean ergodic L¹ operator with the linear rate of growth

Wojciech Kosek (2011)

Colloquium Mathematicae

Similarity:

The rate of growth of an operator T satisfying the mean ergodic theorem (MET) cannot be faster than linear. It was recently shown (Kornfeld-Kosek, Colloq. Math. 98 (2003)) that for every γ > 0, there are positive L¹[0,1] operators T satisfying MET with l i m n | | T | | / n 1 - γ = . In the class of positive L¹ operators this is the most one can hope for in the sense that for every such operator T, there exists a γ₀ > 0 such that l i m s u p | | T | | / n 1 - γ = 0 . In this note we construct an example of a nonpositive L¹ operator with the...

A local Landau type inequality for semigroup orbits

Gerd Herzog, Peer Christian Kunstmann (2014)

Studia Mathematica

Similarity:

Given a strongly continuous semigroup ( S ( t ) ) t 0 on a Banach space X with generator A and an element f ∈ D(A²) satisfying | | S ( t ) f | | e - ω t | | f | | and | | S ( t ) A ² f | | e - ω t | | A ² f | | for all t ≥ 0 and some ω > 0, we derive a Landau type inequality for ||Af|| in terms of ||f|| and ||A²f||. This inequality improves on the usual Landau inequality that holds in the case ω = 0.

Poisson's equation and characterizations of reflexivity of Banach spaces

Vladimir P. Fonf, Michael Lin, Przemysław Wojtaszczyk (2011)

Colloquium Mathematicae

Similarity:

Let X be a Banach space with a basis. We prove that X is reflexive if and only if every power-bounded linear operator T satisfies Browder’s equality x X : s u p n | | k = 1 n T k x | | < = (I-T)X . We then deduce that X (with a basis) is reflexive if and only if every strongly continuous bounded semigroup T t : t 0 with generator A satisfies A X = x X : s u p s > 0 | | 0 s T t x d t | | < . The range (I-T)X (respectively, AX for continuous time) is the space of x ∈ X for which Poisson’s equation (I-T)y = x (Ay = x in continuous time) has a solution y ∈ X; the above equalities...

A condition equivalent to uniform ergodicity

Maria Elena Becker (2005)

Studia Mathematica

Similarity:

Let T be a linear operator on a Banach space X with s u p | | T / n w | | < for some 0 ≤ w < 1. We show that the following conditions are equivalent: (i) n - 1 k = 0 n - 1 T k converges uniformly; (ii) c l ( I - T ) X = z X : l i m n k = 1 n T k z / k e x i s t s .

Rational fixed points for linear group actions

Pietro Corvaja (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We prove a version of the Hilbert Irreducibility Theorem for linear algebraic groups. Given a connected linear algebraic group G , an affine variety V and a finite map π : V G , all defined over a finitely generated field κ of characteristic zero, Theorem 1.6 provides the natural necessary and sufficient condition under which the set π ( V ( κ ) ) contains a Zariski dense sub-semigroup Γ G ( κ ) ; namely, there must exist an unramified covering p : G ˜ G and a map θ : G ˜ V such that π θ = p . In the case κ = , G = 𝔾 a is the additive group, we...