Displaying similar documents to “Leibniz's rule on two-step nilpotent Lie groups”

On the nilpotent residuals of all subalgebras of Lie algebras

Wei Meng, Hailou Yao (2018)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒩 denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra L over an arbitrary field 𝔽 , there exists a smallest ideal I of L such that L / I 𝒩 . This uniquely determined ideal of L is called the nilpotent residual of L and is denoted by L 𝒩 . In this paper, we define the subalgebra S ( L ) = H L I L ( H 𝒩 ) . Set S 0 ( L ) = 0 . Define S i + 1 ( L ) / S i ( L ) = S ( L / S i ( L ) ) for i 1 . By S ( L ) denote the terminal term of the ascending series. It is proved that L = S ( L ) if and only if L 𝒩 is nilpotent. In addition, we investigate the basic properties of a...

The evolution and Poisson kernels on nilpotent meta-abelian groups

Richard Penney, Roman Urban (2013)

Studia Mathematica

Similarity:

Let S be a semidirect product S = N⋊ A where N is a connected and simply connected, non-abelian, nilpotent meta-abelian Lie group and A is isomorphic to k , k>1. We consider a class of second order left-invariant differential operators on S of the form α = L a + Δ α , where α k , and for each a k , L a is left-invariant second order differential operator on N and Δ α = Δ - α , , where Δ is the usual Laplacian on k . Using some probabilistic techniques (e.g., skew-product formulas for diffusions on S and N respectively)...

𝒟 n , r is not potentially nilpotent for n 4 r - 2

Yan Ling Shao, Yubin Gao, Wei Gao (2016)

Czechoslovak Mathematical Journal

Similarity:

An n × n sign pattern 𝒜 is said to be potentially nilpotent if there exists a nilpotent real matrix B with the same sign pattern as 𝒜 . Let 𝒟 n , r be an n × n sign pattern with 2 r n such that the superdiagonal and the ( n , n ) entries are positive, the ( i , 1 ) ( i = 1 , , r ) and ( i , i - r + 1 ) ( i = r + 1 , , n ) entries are negative, and zeros elsewhere. We prove that for r 3 and n 4 r - 2 , the sign pattern 𝒟 n , r is not potentially nilpotent, and so not spectrally arbitrary.

One-parameter contractions of Lie-Poisson brackets

Oksana Yakimova (2014)

Journal of the European Mathematical Society

Similarity:

We consider contractions of Lie and Poisson algebras and the behaviour of their centres under contractions. A polynomial Poisson algebra 𝒜 = 𝕂 [ 𝔸 n ] is said to be of Kostant type, if its centre Z ( 𝒜 ) is freely generated by homogeneous polynomials F 1 , ... , F r such that they give Kostant’s regularity criterion on 𝔸 n ( d x F i are linear independent if and only if the Poisson tensor has the maximal rank at x ). If the initial Poisson algebra is of Kostant type and F i satisfy a certain degree-equality, then the contraction...

A property which ensures that a finitely generated hyper-(Abelian-by-finite) group is finite-by-nilpotent

Fares Gherbi, Nadir Trabelsi (2024)

Czechoslovak Mathematical Journal

Similarity:

Let 𝔐 be the class of groups satisfying the minimal condition on normal subgroups and let Ω be the class of groups of finite lower central depth, that is groups G such that γ i ( G ) = γ i + 1 ( G ) for some positive integer i . The main result states that if G is a finitely generated hyper-(Abelian-by-finite) group such that for every x G , there exists a normal subgroup H x of finite index in G satisfying x , x h 𝔐 Ω for every h H x , then G is finite-by-nilpotent. As a consequence of this result, we prove that a finitely generated...

Partial differential equations in Banach spaces involving nilpotent linear operators

Antonia Chinnì, Paolo Cubiotti (1996)

Annales Polonici Mathematici

Similarity:

Let E be a Banach space. We consider a Cauchy problem of the type ⎧ D t k u + j = 0 k - 1 | α | m A j , α ( D t j D x α u ) = f in n + 1 , ⎨ ⎩ D t j u ( 0 , x ) = φ j ( x ) in n , j=0,...,k-1, where each A j , α is a given continuous linear operator from E into itself. We prove that if the operators A j , α are nilpotent and pairwise commuting, then the problem is well-posed in the space of all functions u C ( n + 1 , E ) whose derivatives are equi-bounded on each bounded subset of n + 1 .

SCAP-subalgebras of Lie algebras

Sara Chehrazi, Ali Reza Salemkar (2016)

Czechoslovak Mathematical Journal

Similarity:

A subalgebra H of a finite dimensional Lie algebra L is said to be a SCAP -subalgebra if there is a chief series 0 = L 0 L 1 ... L t = L of L such that for every i = 1 , 2 , ... , t , we have H + L i = H + L i - 1 or H L i = H L i - 1 . This is analogous to the concept of SCAP -subgroup, which has been studied by a number of authors. In this article, we investigate the connection between the structure of a Lie algebra and its SCAP -subalgebras and give some sufficient conditions for a Lie algebra to be solvable or supersolvable.

Retracts that are kernels of locally nilpotent derivations

Dayan Liu, Xiaosong Sun (2022)

Czechoslovak Mathematical Journal

Similarity:

Let k be a field of characteristic zero and B a k -domain. Let R be a retract of B being the kernel of a locally nilpotent derivation of B . We show that if B = R I for some principal ideal I (in particular, if B is a UFD), then B = R [ 1 ] , i.e., B is a polynomial algebra over R in one variable. It is natural to ask that, if a retract R of a k -UFD B is the kernel of two commuting locally nilpotent derivations of B , then does it follow that B R [ 2 ] ? We give a negative answer to this question. The interest in...

Hall algebra of morphism category

QingHua Chen, Liwang Zhang (2024)

Czechoslovak Mathematical Journal

Similarity:

This paper investigates a universal PBW-basis and a minimal set of generators for the Hall algebra ( C 2 ( 𝒫 ) ) , where C 2 ( 𝒫 ) is the category of morphisms between projective objects in a finitary hereditary exact category 𝒜 . When 𝒜 is the representation category of a Dynkin quiver, we develop multiplication formulas for the degenerate Hall Lie algebra , which is spanned by isoclasses of indecomposable objects in C 2 ( 𝒫 ) . As applications, we demonstrate that contains a Lie subalgebra isomorphic to the central...

Local superderivations on Lie superalgebra 𝔮 ( n )

Haixian Chen, Ying Wang (2018)

Czechoslovak Mathematical Journal

Similarity:

Let 𝔮 ( n ) be a simple strange Lie superalgebra over the complex field . In a paper by A. Ayupov, K. Kudaybergenov (2016), the authors studied the local derivations on semi-simple Lie algebras over and showed the difference between the properties of local derivations on semi-simple and nilpotent Lie algebras. We know that Lie superalgebras are a generalization of Lie algebras and the properties of some Lie superalgebras are similar to those of semi-simple Lie algebras, but 𝔭 ( n ) is an exception....

𝔤 -quasi-Frobenius Lie algebras

David N. Pham (2016)

Archivum Mathematicum

Similarity:

A Lie version of Turaev’s G ¯ -Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a 𝔤 -quasi-Frobenius Lie algebra for 𝔤 a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra ( 𝔮 , β ) together with a left 𝔤 -module structure which acts on 𝔮 via derivations and for which β is 𝔤 -invariant. Geometrically, 𝔤 -quasi-Frobenius Lie algebras are the Lie algebra structures associated to...

A note on infinite a S -groups

Reza Nikandish, Babak Miraftab (2015)

Czechoslovak Mathematical Journal

Similarity:

Let G be a group. If every nontrivial subgroup of G has a proper supplement, then G is called an a S -group. We study some properties of a S -groups. For instance, it is shown that a nilpotent group G is an a S -group if and only if G is a subdirect product of cyclic groups of prime orders. We prove that if G is an a S -group which satisfies the descending chain condition on subgroups, then G is finite. Among other results, we characterize all abelian groups for which every nontrivial quotient group...

-homomorphisms of Lie algebras

Aleksander A. Lashkhi (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

Si studiano gli omomorfismi reticolari ( -omomorfismi) di algebre di Lie sopra anelli commutativi con unità. Le algebre di Lie sopra un campo e le p -algebre di Lie non ammettono -omomorfismi propri. Si assegnano condizioni necessarie e sufficienti affinchè un'algebra di Lie periodica o mista possieda un « -omomorfismo su una catena di lunghezza n .