Displaying similar documents to “Existence and multiplicity of solutions for a class of damped vibration problems with impulsive effects”

A compactness result in thin-film micromagnetics and the optimality of the Néel wall

Radu Ignat, Felix Otto (2008)

Journal of the European Mathematical Society

Similarity:

In this paper, we study a model for the magnetization in thin ferromagnetic films. It comes as a variational problem for S 1 -valued maps m ' (the magnetization) of two variables x ' : E ε ( m ' ) = ε | ' · m ' | 2 d x ' + 1 2 | ' | - 1 / 2 ' · m ' 2 d x ' . We are interested in the behavior of minimizers as ε 0 . They are expected to be S 1 -valued maps m ' of vanishing distributional divergence ' · m ' = 0 , so that appropriate boundary conditions enforce line discontinuities. For finite ε > 0 , these line discontinuities are approximated by smooth transition layers, the so-called Néel...

Bigraphic pairs with a realization containing a split bipartite-graph

Jian Hua Yin, Jia-Yun Li, Jin-Zhi Du, Hai-Yan Li (2019)

Czechoslovak Mathematical Journal

Similarity:

Let K s , t be the complete bipartite graph with partite sets { x 1 , ... , x s } and { y 1 , ... , y t } . A split bipartite-graph on ( s + s ' ) + ( t + t ' ) vertices, denoted by SB s + s ' , t + t ' , is the graph obtained from K s , t by adding s ' + t ' new vertices x s + 1 , ... , x s + s ' , y t + 1 , ... , y t + t ' such that each of x s + 1 , ... , x s + s ' is adjacent to each of y 1 , ... , y t and each of y t + 1 , ... , y t + t ' is adjacent to each of x 1 , ... , x s . Let A and B be nonincreasing lists of nonnegative integers, having lengths m and n , respectively. The pair ( A ; B ) is potentially SB s + s ' , t + t ' -bigraphic if there is a simple bipartite graph containing SB s + s ' , t + t ' (with s + s ' vertices x 1 , ... , x s + s ' in the part of size m ...

Boundedness criteria for a class of second order nonlinear differential equations with delay

Daniel O. Adams, Mathew Omonigho Omeike, Idowu A. Osinuga, Biodun S. Badmus (2023)

Mathematica Bohemica

Similarity:

We consider certain class of second order nonlinear nonautonomous delay differential equations of the form a ( t ) x ' ' + b ( t ) g ( x , x ' ) + c ( t ) h ( x ( t - r ) ) m ( x ' ) = p ( t , x , x ' ) and ( a ( t ) x ' ) ' + b ( t ) g ( x , x ' ) + c ( t ) h ( x ( t - r ) ) m ( x ' ) = p ( t , x , x ' ) , where a , b , c , g , h , m and p are real valued functions which depend at most on the arguments displayed explicitly and r is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski functional to establish our results....

Elementary operators on Banach algebras and Fourier transform

Miloš Arsenović, Dragoljub Kečkić (2006)

Studia Mathematica

Similarity:

We consider elementary operators x j = 1 n a j x b j , acting on a unital Banach algebra, where a j and b j are separately commuting families of generalized scalar elements. We give an ascent estimate and a lower bound estimate for such an operator. Additionally, we give a weak variant of the Fuglede-Putnam theorem for an elementary operator with strongly commuting families a j and b j , i.e. a j = a j ' + i a j ' ' ( b j = b j ' + i b j ' ' ), where all a j ' and a j ' ' ( b j ' and b j ' ' ) commute. The main tool is an L¹ estimate of the Fourier transform of a certain class...

On Fourier asymptotics of a generalized Cantor measure

Bérenger Akon Kpata, Ibrahim Fofana, Konin Koua (2010)

Colloquium Mathematicae

Similarity:

Let d be a positive integer and μ a generalized Cantor measure satisfying μ = j = 1 m a j μ S j - 1 , where 0 < a j < 1 , j = 1 m a j = 1 , S j = ρ R + b j with 0 < ρ < 1 and R an orthogonal transformation of d . Then ⎧1 < p ≤ 2 ⇒ ⎨ s u p r > 0 r d ( 1 / α ' - 1 / p ' ) ( J x r | μ ̂ ( y ) | p ' d y ) 1 / p ' D ρ - d / α ' , x d , ⎩ p = 2 ⇒ infr≥1 rd(1/α’-1/2) (∫J₀r|μ̂(y)|² dy)1/2 ≥ D₂ρd/α’ , where J x r = i = 1 d ( x i - r / 2 , x i + r / 2 ) , α’ is defined by ρ d / α ' = ( j = 1 m a j p ) 1 / p and the constants D₁ and D₂ depend only on d and p.

Duality of matrix-weighted Besov spaces

Svetlana Roudenko (2004)

Studia Mathematica

Similarity:

We determine the duals of the homogeneous matrix-weighted Besov spaces p α q ( W ) and p α q ( W ) which were previously defined in [5]. If W is a matrix A p weight, then the dual of p α q ( W ) can be identified with p ' - α q ' ( W - p ' / p ) and, similarly, [ p α q ( W ) ] * p ' - α q ' ( W - p ' / p ) . Moreover, for certain W which may not be in the A p class, the duals of p α q ( W ) and p α q ( W ) are determined and expressed in terms of the Besov spaces p ' - α q ' ( A Q - 1 ) and p ' - α q ' ( A Q - 1 ) , which we define in terms of reducing operators A Q Q associated with W. We also develop the basic theory of these reducing operator Besov spaces....

On a divisibility problem

Shichun Yang, Florian Luca, Alain Togbé (2019)

Mathematica Bohemica

Similarity:

Let p 1 , p 2 , be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if k 5 , then ( p k + 1 - 1 ) ! ( 1 2 ( p k + 1 - 1 ) ) ! p k ! , which improves a previous result of the second author.

E 1 -degeneration and d ' d ' ' -lemma

Tai-Wei Chen, Chung-I Ho, Jyh-Haur Teh (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For a double complex ( A , d ' , d ' ' ) , we show that if it satisfies the d ' d ' ' -lemma and the spectral sequence { E r p , q } induced by A does not degenerate at E 0 , then it degenerates at E 1 . We apply this result to prove the degeneration at E 1 of a Hodge-de Rham spectral sequence on compact bi-generalized Hermitian manifolds that satisfy a version of d ' d ' ' -lemma.

Existence of solutions for a coupled system with φ -Laplacian operators and nonlinear coupled boundary conditions

Konan Charles Etienne Goli, Assohoun Adjé (2017)

Communications in Mathematics

Similarity:

We study the existence of solutions of the system ( φ 1 ( u 1 ' ( t ) ) ) ' = f 1 ( t , u 1 ( t ) , u 2 ( t ) , u 1 ' ( t ) , u 2 ' ( t ) ) , a.e. t [ 0 , T ] , ( φ 2 ( u 2 ' ( t ) ) ) ' = f 2 ( t , u 1 ( t ) , u 2 ( t ) , u 1 ' ( t ) , u 2 ' ( t ) ) , a.e. t [ 0 , T ] , submitted to nonlinear coupled boundary conditions on [ 0 , T ] where φ 1 , φ 2 : ( - a , a ) , with 0 < a < + , are two increasing homeomorphisms such that φ 1 ( 0 ) = φ 2 ( 0 ) = 0 , and f i : [ 0 , T ] × 4 , i { 1 , 2 } are two L 1 -Carathéodory functions. Using some new conditions and Schauder fixed point Theorem, we obtain solvability result.

Ramsey numbers for trees II

Zhi-Hong Sun (2021)

Czechoslovak Mathematical Journal

Similarity:

Let r ( G 1 , G 2 ) be the Ramsey number of the two graphs G 1 and G 2 . For n 1 n 2 1 let S ( n 1 , n 2 ) be the double star given by V ( S ( n 1 , n 2 ) ) = { v 0 , v 1 , ... , v n 1 , w 0 , w 1 , ... , w n 2 } and E ( S ( n 1 , n 2 ) ) = { v 0 v 1 , ... , v 0 v n 1 , v 0 w 0 , w 0 w 1 , ... , w 0 w n 2 } . We determine r ( K 1 , m - 1 , S ( n 1 , n 2 ) ) under certain conditions. For n 6 let T n 3 = S ( n - 5 , 3 ) , T n ' ' = ( V , E 2 ) and T n ' ' ' = ( V , E 3 ) , where V = { v 0 , v 1 , ... , v n - 1 } , E 2 = { v 0 v 1 , ... , v 0 v n - 4 , v 1 v n - 3 , v 1 v n - 2 , v 2 v n - 1 } and E 3 = { v 0 v 1 , ... , v 0 v n - 4 , v 1 v n - 3 , v 2 v n - 2 , v 3 v n - 1 } . We also obtain explicit formulas for r ( K 1 , m - 1 , T n ) , r ( T m ' , T n ) ( n m + 3 ) , r ( T n , T n ) , r ( T n ' , T n ) and r ( P n , T n ) , where T n { T n ' ' , T n ' ' ' , T n 3 } , P n is the path on n vertices and T n ' is the unique tree with n vertices and maximal degree n - 2 .

Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions

Jean Mawhin, Katarzyna Szymańska-Dębowska (2016)

Mathematica Bohemica

Similarity:

A couple ( σ , τ ) of lower and upper slopes for the resonant second order boundary value problem x ' ' = f ( t , x , x ' ) , x ( 0 ) = 0 , x ' ( 1 ) = 0 1 x ' ( s ) d g ( s ) , with g increasing on [ 0 , 1 ] such that 0 1 d g = 1 , is a couple of functions σ , τ C 1 ( [ 0 , 1 ] ) such that σ ( t ) τ ( t ) for all t [ 0 , 1 ] , σ ' ( t ) f ( t , x , σ ( t ) ) , σ ( 1 ) 0 1 σ ( s ) d g ( s ) , τ ' ( t ) f ( t , x , τ ( t ) ) , τ ( 1 ) 0 1 τ ( s ) d g ( s ) , in the stripe 0 t σ ( s ) d s x 0 t τ ( s ) d s and t [ 0 , 1 ] . It is proved that the existence of such a couple ( σ , τ ) implies the existence and localization of a solution to the boundary value problem. Multiplicity results are also obtained.

Convolution theorems for starlike and convex functions in the unit disc

M. Anbudurai, R. Parvatham, S. Ponnusamy, V. Singh (2004)

Annales Polonici Mathematici

Similarity:

Let A denote the space of all analytic functions in the unit disc Δ with the normalization f(0) = f’(0) − 1 = 0. For β < 1, let P β = f A : R e f ' ( z ) > β , z Δ . For λ > 0, suppose that denotes any one of the following classes of functions: M 1 , λ ( 1 ) = f : R e z ( z f ' ( z ) ) ' ' > - λ , z Δ , M 1 , λ ( 2 ) = f : R e z ( z ² f ' ' ( z ) ) ' ' > - λ , z Δ , M 1 , λ ( 3 ) = f : R e 1 / 2 ( z ( z ² f ' ( z ) ) ' ' ) ' - 1 > - λ , z Δ . The main purpose of this paper is to find conditions on λ and γ so that each f ∈ is in γ or γ , γ ∈ [0,1/2]. Here γ and γ respectively denote the class of all starlike functions of order γ and the class of all convex functions of order γ. As a consequence, we obtain...

Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt A p -weighted L p -spaces

Ryôhei Kakizawa (2018)

Czechoslovak Mathematical Journal

Similarity:

We discuss the validity of the Helmholtz decomposition of the Muckenhoupt A p -weighted L p -space ( L w p ( Ω ) ) n for any domain Ω in n , n , n 2 , 1 < p < and Muckenhoupt A p -weight w A p . Set p ' : = p / ( p - 1 ) and w ' : = w - 1 / ( p - 1 ) . Then the Helmholtz decomposition of ( L w p ( Ω ) ) n and ( L w ' p ' ( Ω ) ) n and the variational estimate of L w , π p ( Ω ) and L w ' , π p ' ( Ω ) are equivalent. Furthermore, we can replace L w , π p ( Ω ) and L w ' , π p ' ( Ω ) by L w , σ p ( Ω ) and L w ' , σ p ' ( Ω ) , respectively. The proof is based on the reflexivity and orthogonality of L w , π p ( Ω ) and L w , σ p ( Ω ) and the Hahn-Banach theorem. As a corollary of our main result, we obtain the extrapolation...

On the least almost-prime in arithmetic progression

Jinjiang Li, Min Zhang, Yingchun Cai (2023)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒫 r denote an almost-prime with at most r prime factors, counted according to multiplicity. Suppose that a and q are positive integers satisfying ( a , q ) = 1 . Denote by 𝒫 2 ( a , q ) the least almost-prime 𝒫 2 which satisfies 𝒫 2 a ( mod q ) . It is proved that for sufficiently large q , there holds 𝒫 2 ( a , q ) q 1 . 8345 . This result constitutes an improvement upon that of Iwaniec (1982), who obtained the same conclusion, but for the range 1 . 845 in place of 1 . 8345 .

Oscillation criteria for fourth order half-linear differential equations

Jaroslav Jaroš, Kusano Takaŝi, Tomoyuki Tanigawa (2020)

Archivum Mathematicum

Similarity:

Criteria for oscillatory behavior of solutions of fourth order half-linear differential equations of the form ( | y ' ' | α sgn y ' ' ) ' ' + q ( t ) | y | α sgn y = 0 , t a > 0 , A where α > 0 is a constant and q ( t ) is positive continuous function on [ a , ) , are given in terms of an increasing continuously differentiable function ω ( t ) from [ a , ) to ( 0 , ) which satisfies a 1 / ( t ω ( t ) ) d t < .