The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The classical subspaces of the projective tensor products of p and C(α) spaces, α < ω₁”

Some isomorphic properties in projective tensor products

Ioana Ghenciu (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We give sufficient conditions implying that the projective tensor product of two Banach spaces X and Y has the p -sequentially Right and the p - L -limited properties, 1 p < .

Linear natural operators lifting p -vectors to tensors of type ( q , 0 ) on Weil bundles

Jacek Dębecki (2016)

Czechoslovak Mathematical Journal

Similarity:

We give a classification of all linear natural operators transforming p -vectors (i.e., skew-symmetric tensor fields of type ( p , 0 ) ) on n -dimensional manifolds M to tensor fields of type ( q , 0 ) on T A M , where T A is a Weil bundle, under the condition that p 1 , n p and n q . The main result of the paper states that, roughly speaking, each linear natural operator lifting p -vectors to tensor fields of type ( q , 0 ) on T A is a sum of operators obtained by permuting the indices of the tensor products of linear natural...

Property ( 𝐰𝐋 ) and the reciprocal Dunford-Pettis property in projective tensor products

Ioana Ghenciu (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A Banach space X has the reciprocal Dunford-Pettis property ( R D P P ) if every completely continuous operator T from X to any Banach space Y is weakly compact. A Banach space X has the R D P P (resp. property ( w L ) ) if every L -subset of X * is relatively weakly compact (resp. weakly precompact). We prove that the projective tensor product X π Y has property ( w L ) when X has the R D P P , Y has property ( w L ) , and L ( X , Y * ) = K ( X , Y * ) .

2-summing multiplication operators

Dumitru Popa (2013)

Studia Mathematica

Similarity:

Let 1 ≤ p < ∞, = ( X ) n be a sequence of Banach spaces and l p ( ) the coresponding vector valued sequence space. Let = ( X ) n , = ( Y ) n be two sequences of Banach spaces, = ( V ) n , Vₙ: Xₙ → Yₙ, a sequence of bounded linear operators and 1 ≤ p,q < ∞. We define the multiplication operator M : l p ( ) l q ( ) by M ( ( x ) n ) : = ( V ( x ) ) n . We give necessary and sufficient conditions for M to be 2-summing when (p,q) is one of the couples (1,2), (2,1), (2,2), (1,1), (p,1), (p,2), (2,p), (1,p), (p,q); in the last case 1 < p < 2, 1 < q < ∞. ...

Recurrence and mixing recurrence of multiplication operators

Mohamed Amouch, Hamza Lakrimi (2024)

Mathematica Bohemica

Similarity:

Let X be a Banach space, ( X ) the algebra of bounded linear operators on X and ( J , · J ) an admissible Banach ideal of ( X ) . For T ( X ) , let L J , T and R J , T ( J ) denote the left and right multiplication defined by L J , T ( A ) = T A and R J , T ( A ) = A T , respectively. In this paper, we study the transmission of some concepts related to recurrent operators between T ( X ) , and their elementary operators L J , T and R J , T . In particular, we give necessary and sufficient conditions for L J , T and R J , T to be sequentially recurrent. Furthermore, we prove that L J , T is recurrent...

On almost everywhere differentiability of the metric projection on closed sets in l p ( n ) , 2 < p <

Tord Sjödin (2018)

Czechoslovak Mathematical Journal

Similarity:

Let F be a closed subset of n and let P ( x ) denote the metric projection (closest point mapping) of x n onto F in l p -norm. A classical result of Asplund states that P is (Fréchet) differentiable almost everywhere (a.e.) in n in the Euclidean case p = 2 . We consider the case 2 < p < and prove that the i th component P i ( x ) of P ( x ) is differentiable a.e. if P i ( x ) x i and satisfies Hölder condition of order 1 / ( p - 1 ) if P i ( x ) = x i .

The weak Gelfand-Phillips property in spaces of compact operators

Ioana Ghenciu (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For Banach spaces X and Y , let K w * ( X * , Y ) denote the space of all w * - w continuous compact operators from X * to Y endowed with the operator norm. A Banach space X has the w G P property if every Grothendieck subset of X is relatively weakly compact. In this paper we study Banach spaces with property w G P . We investigate whether the spaces K w * ( X * , Y ) and X ϵ Y have the w G P property, when X and Y have the w G P property.

A characterization of reflexive spaces of operators

Janko Bračič, Lina Oliveira (2018)

Czechoslovak Mathematical Journal

Similarity:

We show that for a linear space of operators ( 1 , 2 ) the following assertions are equivalent. (i) is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map Ψ = ( ψ 1 , ψ 2 ) on a bilattice Bil ( ) of subspaces determined by with P ψ 1 ( P , Q ) and Q ψ 2 ( P , Q ) for any pair ( P , Q ) Bil ( ) , and such that an operator T ( 1 , 2 ) lies in if and only if ψ 2 ( P , Q ) T ψ 1 ( P , Q ) = 0 for all ( P , Q ) Bil ( ) . This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.