Displaying similar documents to “Cocycle invariants of codimension 2 embeddings of manifolds”

Acyclic 4-choosability of planar graphs without 4-cycles

Yingcai Sun, Min Chen (2020)

Czechoslovak Mathematical Journal

Similarity:

A proper vertex coloring of a graph G is acyclic if there is no bicolored cycle in G . In other words, each cycle of G must be colored with at least three colors. Given a list assignment L = { L ( v ) : v V } , if there exists an acyclic coloring π of G such that π ( v ) L ( v ) for all v V , then we say that G is acyclically L -colorable. If G is acyclically L -colorable for any list assignment L with | L ( v ) | k for all v V , then G is acyclically k -choosable. In 2006, Montassier, Raspaud and Wang conjectured that every planar graph without...

Neighbor sum distinguishing list total coloring of IC-planar graphs without 5-cycles

Donghan Zhang (2022)

Czechoslovak Mathematical Journal

Similarity:

Let G = ( V ( G ) , E ( G ) ) be a simple graph and E G ( v ) denote the set of edges incident with a vertex v . A neighbor sum distinguishing (NSD) total coloring φ of G is a proper total coloring of G such that z E G ( u ) { u } φ ( z ) z E G ( v ) { v } φ ( z ) for each edge u v E ( G ) . Pilśniak and Woźniak asserted in 2015 that each graph with maximum degree Δ admits an NSD total ( Δ + 3 ) -coloring. We prove that the list version of this conjecture holds for any IC-planar graph with Δ 11 but without 5 -cycles by applying the Combinatorial Nullstellensatz.

Maximum number of limit cycles for generalized Liénard polynomial differential systems

Aziza Berbache, Ahmed Bendjeddou, Sabah Benadouane (2021)

Mathematica Bohemica

Similarity:

We consider limit cycles of a class of polynomial differential systems of the form x ˙ = y , y ˙ = - x - ε ( g 21 ( x ) y 2 α + 1 + f 21 ( x ) y 2 β ) - ε 2 ( g 22 ( x ) y 2 α + 1 + f 22 ( x ) y 2 β ) , where β and α are positive integers, g 2 j and f 2 j have degree m and n , respectively, for each j = 1 , 2 , and ε is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center x ˙ = y , y ˙ = - x using the averaging theory of first and second order.

Coloring grids

Ramiro de la Vega (2015)

Fundamenta Mathematicae

Similarity:

A structure = ( A ; E i ) i n where each E i is an equivalence relation on A is called an n-grid if any two equivalence classes coming from distinct E i ’s intersect in a finite set. A function χ: A → n is an acceptable coloring if for all i ∈ n, the χ - 1 ( i ) intersects each E i -equivalence class in a finite set. If B is a set, then the n-cube Bⁿ may be seen as an n-grid, where the equivalence classes of E i are the lines parallel to the ith coordinate axis. We use elementary submodels of the universe to characterize...

Characterization of cycle domains via Kobayashi hyperbolicity

Gregor Fels, Alan Huckleberry (2005)

Bulletin de la Société Mathématique de France

Similarity:

A real form G of a complex semi-simple Lie group G has only finitely many orbits in any given G -flag manifold Z = G / Q . The complex geometry of these orbits is of interest, e.g., for the associated representation theory. The open orbits D generally possess only the constant holomorphic functions, and the relevant associated geometric objects are certain positive-dimensional compact complex submanifolds of D which, with very few well-understood exceptions, are parameterized by the Wolf cycle...

Piecewise linear approximation of smooth functions of two variables

Joseph H.G. Fu (2013)

Actes des rencontres du CIRM

Similarity:

The normal cycle of a singular subset X of a smooth manifold is a basic tool for understanding and computing the curvature of X . If X is replaced by a singular function on n then there is a natural companion notion called the of f , which has been introduced by the author and by R. Jerrard. We discuss a few fundamental facts and open problems about functions f that admit gradient cycles, with particular attention to the first nontrivial dimension n = 2 .

Invariants for the modular cyclic group of prime order via classical invariant theory

David L. Wehlau (2013)

Journal of the European Mathematical Society

Similarity:

Let 𝔽 be any field of characteristic p . It is well-known that there are exactly p inequivalent indecomposable representations V 1 , V 2 , ... , V p of C p defined over 𝔽 . Thus if V is any finite dimensional C p -representation there are non-negative integers 0 n 1 , n 2 , ... , n k p - 1 such that V i = 1 k V n i + 1 . It is also well-known there is a unique (up to equivalence) d + 1 dimensional irreducible complex representation of S L 2 ( ) given by its action on the space R d of d forms. Here we prove a conjecture, made by R. J. Shank, which reduces the computation...

The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths

Halina Bielak, Kinga Dąbrowska (2015)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The Ramsey number R ( G , H ) for a pair of graphs G and H is defined as the smallest integer n such that, for any graph F on n vertices, either F contains G or F ¯ contains H as a subgraph, where F ¯ denotes the complement of F . We study Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths and determine these numbers for some cases. We extend many known results studied in [5, 14, 18, 19, 20]. In particular we count the numbers R ( K 1 + L n , P m ) and R ( K 1 + L n , C m ) for some integers m , n , where L n is...

On subgraphs without large components

Glenn G. Chappell, John Gimbel (2017)

Mathematica Bohemica

Similarity:

We consider, for a positive integer k , induced subgraphs in which each component has order at most k . Such a subgraph is said to be k -divided. We show that finding large induced subgraphs with this property is NP-complete. We also consider a related graph-coloring problem: how many colors are required in a vertex coloring in which each color class induces a k -divided subgraph. We show that the problem of determining whether some given number of colors suffice is NP-complete, even for...

On short cycles in triangle-free oriented graphs

Yurong Ji, Shufei Wu, Hui Song (2018)

Czechoslovak Mathematical Journal

Similarity:

An orientation of a simple graph is referred to as an oriented graph. Caccetta and Häggkvist conjectured that any digraph on n vertices with minimum outdegree d contains a directed cycle of length at most n / d . In this paper, we consider short cycles in oriented graphs without directed triangles. Suppose that α 0 is the smallest real such that every n -vertex digraph with minimum outdegree at least α 0 n contains a directed triangle. Let ϵ < ( 3 - 2 α 0 ) / ( 4 - 2 α 0 ) be a positive real. We show that if D is an oriented graph...

A note on the size Ramsey numbers for matchings versus cycles

Edy Tri Baskoro, Tomáš Vetrík (2021)

Mathematica Bohemica

Similarity:

For graphs G , F 1 , F 2 , we write G ( F 1 , F 2 ) if for every red-blue colouring of the edge set of G we have a red copy of F 1 or a blue copy of F 2 in G . The size Ramsey number r ^ ( F 1 , F 2 ) is the minimum number of edges of a graph G such that G ( F 1 , F 2 ) . Erdős and Faudree proved that for the cycle C n of length n and for t 2 matchings t K 2 , the size Ramsey number r ^ ( t K 2 , C n ) < n + ( 4 t + 3 ) n . We improve their upper bound for t = 2 and t = 3 by showing that r ^ ( 2 K 2 , C n ) n + 2 3 n + 9 for n 12 and r ^ ( 3 K 2 , C n ) < n + 6 n + 9 for n 25 .

Majority choosability of 1-planar digraph

Weihao Xia, Jihui Wang, Jiansheng Cai (2023)

Czechoslovak Mathematical Journal

Similarity:

A majority coloring of a digraph D with k colors is an assignment π : V ( D ) { 1 , 2 , , k } such that for every v V ( D ) we have π ( w ) = π ( v ) for at most half of all out-neighbors w N + ( v ) . A digraph D is majority k -choosable if for any assignment of lists of colors of size k to the vertices, there is a majority coloring of D from these lists. We prove that if U ( D ) is a 1-planar graph without a 4-cycle, then D is majority 3-choosable. And we also prove that every NIC-planar digraph is majority 3-choosable.

On g c -colorings of nearly bipartite graphs

Yuzhuo Zhang, Xia Zhang (2018)

Czechoslovak Mathematical Journal

Similarity:

Let G be a simple graph, let d ( v ) denote the degree of a vertex v and let g be a nonnegative integer function on V ( G ) with 0 g ( v ) d ( v ) for each vertex v V ( G ) . A g c -coloring of G is an edge coloring such that for each vertex v V ( G ) and each color c , there are at least g ( v ) edges colored c incident with v . The g c -chromatic index of G , denoted by χ g c ' ( G ) , is the maximum number of colors such that a g c -coloring of G exists. Any simple graph G has the g c -chromatic index equal to δ g ( G ) or δ g ( G ) - 1 , where δ g ( G ) = min v V ( G ) d ( v ) / g ( v ) . A graph G is nearly bipartite,...

-invariants and Darmon cycles attached to modular forms

Victor Rotger, Marco Adamo Seveso (2012)

Journal of the European Mathematical Society

Similarity:

Let f be a modular eigenform of even weight k 2 and new at a prime p dividing exactly the level with respect to an indefinite quaternion algebra. The theory of Fontaine-Mazur allows to attach to f a monodromy module D f F M and an -invariant f F M . The first goal of this paper is building a suitable p -adic integration theory that allows us to construct a new monodromy module D f and -invariant f , in the spirit of Darmon. The two monodromy modules are isomorphic, and in particular the two -invariants...

Indestructible colourings and rainbow Ramsey theorems

Lajos Soukup (2009)

Fundamenta Mathematicae

Similarity:

We show that if a colouring c establishes ω₂ ↛ [(ω₁:ω)]² then c establishes this negative partition relation in each Cohen-generic extension of the ground model, i.e. this property of c is Cohen-indestructible. This result yields a negative answer to a question of Erdős and Hajnal: it is consistent that GCH holds and there is a colouring c:[ω₂]² → 2 establishing ω₂ ↛ [(ω₁:ω)]₂ such that some colouring g:[ω₁]² → 2 does not embed into c. It is also consistent that 2 ω is arbitrarily large,...

Classes of hypergraphs with sum number one

Hanns-Martin Teichert (2000)

Discussiones Mathematicae Graph Theory

Similarity:

A hypergraph ℋ is a sum hypergraph iff there are a finite S ⊆ ℕ⁺ and d̲,d̅ ∈ ℕ⁺ with 1 < d̲ < d̅ such that ℋ is isomorphic to the hypergraph d ̲ , d ̅ ( S ) = ( V , ) where V = S and = e S : d ̲ < | e | < d ̅ v e v S . For an arbitrary hypergraph ℋ the sum number(ℋ ) is defined to be the minimum number of isolatedvertices w , . . . , w σ V such that w , . . . , w σ is a sum hypergraph. For graphs it is known that cycles Cₙ and wheels Wₙ have sum numbersgreater than one. Generalizing these graphs we prove for the hypergraphs ₙ and ₙ that under a certain condition...

η -Ricci Solitons on η -Einstein ( L C S ) n -Manifolds

Shyamal Kumar Hui, Debabrata Chakraborty (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

The object of the present paper is to study η -Ricci solitons on η -Einstein ( L C S ) n -manifolds. It is shown that if ξ is a recurrent torse forming η -Ricci soliton on an η -Einstein ( L C S ) n -manifold then ξ is (i) concurrent and (ii) Killing vector field.