Displaying similar documents to “Orbits of linear operators and Banach space geometry”

On nilpotent operators

Laura Burlando (2005)

Studia Mathematica

Similarity:

We give several necessary and sufficient conditions in order that a bounded linear operator on a Banach space be nilpotent. We also discuss three necessary conditions for nilpotency. Furthermore, we construct an infinite family (in one-to-one correspondence with the square-summable sequences ( ε ) n of strictly positive real numbers) of nonnilpotent quasinilpotent operators on an infinite-dimensional Hilbert space, all the iterates of each of which have closed range. Each of these operators...

Spaces of operators and c₀

P. Lewis (2001)

Studia Mathematica

Similarity:

Bessaga and Pełczyński showed that if c₀ embeds in the dual X* of a Banach space X, then ℓ¹ embeds complementably in X, and embeds as a subspace of X*. In this note the Diestel-Faires theorem and techniques of Kalton are used to show that if X is an infinite-dimensional Banach space, Y is an arbitrary Banach space, and c₀ embeds in L(X,Y), then embeds in L(X,Y), and ℓ¹ embeds complementably in X γ Y * . Applications to embeddings of c₀ in various spaces of operators are given.

Absolutely continuous linear operators on Köthe-Bochner spaces

(2011)

Banach Center Publications

Similarity:

Let E be a Banach function space over a finite and atomless measure space (Ω,Σ,μ) and let ( X , | | · | | X ) and ( Y , | | · | | Y ) be real Banach spaces. A linear operator T acting from the Köthe-Bochner space E(X) to Y is said to be absolutely continuous if | | T ( 1 A f ) | | Y 0 whenever μ(Aₙ) → 0, (Aₙ) ⊂ Σ. In this paper we examine absolutely continuous operators from E(X) to Y. Moreover, we establish relationships between different classes of linear operators from E(X) to Y.

Universality, complexity and asymptotically uniformly smooth Banach spaces

Ryan M. Causey, Gilles Lancien (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For 1 < p , we show the existence of a Banach space which is both injectively and surjectively universal for the class of all separable Banach spaces with an equivalent p -asymptotically uniformly smooth norm. We prove that this class is analytic complete in the class of separable Banach spaces. These results extend previous works by N. J. Kalton, D. Werner and O. Kurka in the case p = .

Quasinilpotent operators in operator Lie algebras II

Peng Cao (2009)

Studia Mathematica

Similarity:

In this paper, it is proved that the Banach algebra ( ) ¯ , generated by a Lie algebra ℒ of operators, consists of quasinilpotent operators if ℒ consists of quasinilpotent operators and ( ) ¯ consists of polynomially compact operators. It is also proved that ( ) ¯ consists of quasinilpotent operators if ℒ is an essentially nilpotent Engel Lie algebra generated by quasinilpotent operators. Finally, Banach algebras generated by essentially nilpotent Lie algebras are shown to be compactly quasinilpotent. ...

A note on a class of homeomorphisms between Banach spaces

Piotr Fijałkowski (2005)

Colloquium Mathematicae

Similarity:

This paper deals with homeomorphisms F: X → Y, between Banach spaces X and Y, which are of the form F ( x ) : = F ̃ x ( 2 n + 1 ) where F ̃ : X 2 n + 1 Y is a continuous (2n+1)-linear operator.

Note on distortion and Bourgain ℓ₁-index

Anna Maria Pelczar (2009)

Studia Mathematica

Similarity:

Relations between different notions measuring proximity to ℓ₁ and distortability of a Banach space are studied. The main result states that a Banach space all of whose subspaces have Bourgain ℓ₁-index greater than ω α , α < ω₁, contains either an arbitrarily distortable subspace or an α -asymptotic subspace.

Envelope functions and asymptotic structures in Banach spaces

Bünyamin Sarı (2004)

Studia Mathematica

Similarity:

We introduce a notion of disjoint envelope functions to study asymptotic structures of Banach spaces. The main result gives a new characterization of asymptotic- p spaces in terms of the p -behavior of “disjoint-permissible” vectors of constant coefficients. Applying this result to Tirilman spaces we obtain a negative solution to a conjecture of Casazza and Shura. Further investigation of the disjoint envelopes leads to a finite-representability result in the spirit of the Maurey-Pisier...

Separated sequences in asymptotically uniformly convex Banach spaces

Sylvain Delpech (2010)

Colloquium Mathematicae

Similarity:

We prove that the unit sphere of every infinite-dimensional Banach space X contains an α-separated sequence, for every 0 < α < 1 + δ ̅ X ( 1 ) , where δ ̅ X denotes the modulus of asymptotic uniform convexity of X.

The Dual of a Non-reflexive L-embedded Banach Space Contains l Isometrically

Hermann Pfitzner (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

A Banach space is said to be L-embedded if it is complemented in its bidual in such a way that the norm between the two complementary subspaces is additive. We prove that the dual of a non-reflexive L-embedded Banach space contains l isometrically.

Projections from L ( X , Y ) onto K ( X , Y )

Kamil John (2000)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Generalization of certain results in [Sap] and simplification of the proofs are given. We observe e.g.: Let X and Y be Banach spaces such that X is weakly compactly generated Asplund space and X * has the approximation property (respectively Y is weakly compactly generated Asplund space and Y * has the approximation property). Suppose that L ( X , Y ) K ( X , Y ) and let 1 < λ < 2 . Then X (respectively Y ) can be equivalently renormed so that any projection P of L ( X , Y ) onto K ( X , Y ) has the sup-norm greater or equal to λ . ...

-vectors and boundedness

Jan Stochel, F. H. Szafraniec (1997)

Annales Polonici Mathematici

Similarity:

The following two questions as well as their relationship are studied: (i) Is a closed linear operator in a Banach space bounded if its -vectors coincide with analytic (or semianalytic) ones? (ii) When are the domains of two successive powers of the operator in question equal? The affirmative answer to the first question is established in case of paranormal operators. All these investigations are illustrated in the context of weighted shifts.

The structure of Lindenstrauss-Pełczyński spaces

Jesús M. F. Castillo, Yolanda Moreno, Jesús Suárez (2009)

Studia Mathematica

Similarity:

Lindenstrauss-Pełczyński (for short ℒ) spaces were introduced by these authors [Studia Math. 174 (2006)] as those Banach spaces X such that every operator from a subspace of c₀ into X can be extended to the whole c₀. Here we obtain the following structure theorem: a separable Banach space X is an ℒ-space if and only if every subspace of c₀ is placed in X in a unique position, up to automorphisms of X. This, in combination with a result of Kalton [New York J. Math. 13 (2007)], provides...

Some properties and applications of equicompact sets of operators

E. Serrano, C. Piñeiro, J. M. Delgado (2007)

Studia Mathematica

Similarity:

Let X and Y be Banach spaces. A subset M of (X,Y) (the vector space of all compact operators from X into Y endowed with the operator norm) is said to be equicompact if every bounded sequence (xₙ) in X has a subsequence ( x k ( n ) ) such that ( T x k ( n ) ) is uniformly convergent for T ∈ M. We study the relationship between this concept and the notion of uniformly completely continuous set and give some applications. Among other results, we obtain a generalization of the classical Ascoli theorem and a compactness...

Operator Lipschitz functions on Banach spaces

Jan Rozendaal, Fedor Sukochev, Anna Tomskova (2016)

Studia Mathematica

Similarity:

Let X, Y be Banach spaces and let (X,Y) be the space of bounded linear operators from X to Y. We develop the theory of double operator integrals on (X,Y) and apply this theory to obtain commutator estimates of the form | | f ( B ) S - S f ( A ) | | ( X , Y ) c o n s t | | B S - S A | | ( X , Y ) for a large class of functions f, where A ∈ (X), B ∈ (Y) are scalar type operators and S ∈ (X,Y). In particular, we establish this estimate for f(t): = |t| and for diagonalizable operators on X = p and Y = q for p < q. We also study the estimate above in the setting of Banach...

Asymptotic behaviour of solutions of difference equations in Banach spaces

Anna Kisiołek (2008)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper we consider the first order difference equation in a Banach space Δ x n = i = 0 a n i f ( x n + i ) . We show that this equation has a solution asymptotically equal to a. As an application of our result we study the difference equation Δ x n = i = 0 a n i g ( x n + i ) + i = 0 b n i h ( x n + i ) + y n and give conditions when this equation has solutions. In this note we extend the results from [8,9]. For example, in [9] the function f is a real Lipschitz function. We suppose that f has values in a Banach space and satisfies some conditions with respect to the measure...

Eigenvalues of Hille-Tamarkin operators and geometry of Banach function spaces

Thomas Kühn, Mieczysław Mastyło (2011)

Studia Mathematica

Similarity:

We investigate how the asymptotic eigenvalue behaviour of Hille-Tamarkin operators in Banach function spaces depends on the geometry of the spaces involved. It turns out that the relevant properties are cotype p and p-concavity. We prove some eigenvalue estimates for Hille-Tamarkin operators in general Banach function spaces which extend the classical results in Lebesgue spaces. We specialize our results to Lorentz, Orlicz and Zygmund spaces and give applications to Fourier analysis....

(Non-)amenability of ℬ(E)

Volker Runde (2010)

Banach Center Publications

Similarity:

In 1972, the late B. E. Johnson introduced the notion of an amenable Banach algebra and asked whether the Banach algebra ℬ(E) of all bounded linear operators on a Banach space E could ever be amenable if dim E = ∞. Somewhat surprisingly, this question was answered positively only very recently as a by-product of the Argyros-Haydon result that solves the “scalar plus compact problem”: there is an infinite-dimensional Banach space E, the dual of which is ℓ¹, such that ( E ) = ( E ) + i d E . Still, ℬ(ℓ²) is...

On the compact approximation property

Vegard Lima, Åsvald Lima, Olav Nygaard (2004)

Studia Mathematica

Similarity:

We show that a Banach space X has the compact approximation property if and only if for every Banach space Y and every weakly compact operator T: Y → X, the space = S ∘ T: S compact operator on X is an ideal in = span(,T) if and only if for every Banach space Y and every weakly compact operator T: Y → X, there is a net ( S γ ) of compact operators on X such that s u p γ | | S γ T | | | | T | | and S γ I X in the strong operator topology. Similar results for dual spaces are also proved.

On ergodicity for operators with bounded resolvent in Banach spaces

Kirsti Mattila (2011)

Studia Mathematica

Similarity:

We prove results on ergodicity, i.e. on the property that the space is a direct sum of the kernel of an operator and the closure of its range, for closed linear operators A such that | | α ( α - A ) - 1 | | is uniformly bounded for all α > 0. We consider operators on Banach spaces which have the property that the space is complemented in its second dual space by a projection P. Results on ergodicity are obtained under a norm condition ||I - 2P|| ||I - Q|| < 2 where Q is a projection depending on the...

Factorization of vector measures and their integration operators

José Rodríguez (2016)

Colloquium Mathematicae

Similarity:

Let X be a Banach space and ν a countably additive X-valued measure defined on a σ-algebra. We discuss some generation properties of the Banach space L¹(ν) and its connection with uniform Eberlein compacta. In this way, we provide a new proof that L¹(ν) is weakly compactly generated and embeds isomorphically into a Hilbert generated Banach space. The Davis-Figiel-Johnson-Pełczyński factorization of the integration operator I ν : L ¹ ( ν ) X is also analyzed. As a result, we prove that if I ν is both completely...

On the existence of non-linear frames

Shah Jahan, Varinder Kumar, S.K. Kaushik (2017)

Archivum Mathematicum

Similarity:

A stronger version of the notion of frame in Banach space called Strong Retro Banach frame (SRBF) is defined and studied. It has been proved that if 𝒳 is a Banach space such that 𝒳 * has a SRBF, then 𝒳 has a Bi-Banach frame with some geometric property. Also, it has been proved that if a Banach space 𝒳 has an approximative Schauder frame, then 𝒳 * has a SRBF. Finally, the existence of a non-linear SRBF in the conjugate of a separable Banach space has been proved.

Dunford-Pettis operators on the space of Bochner integrable functions

Marian Nowak (2011)

Banach Center Publications

Similarity:

Let (Ω,Σ,μ) be a finite measure space and let X be a real Banach space. Let L Φ ( X ) be the Orlicz-Bochner space defined by a Young function Φ. We study the relationships between Dunford-Pettis operators T from L¹(X) to a Banach space Y and the compactness properties of the operators T restricted to L Φ ( X ) . In particular, it is shown that if X is a reflexive Banach space, then a bounded linear operator T:L¹(X) → Y is Dunford-Pettis if and only if T restricted to L ( X ) is ( τ ( L ( X ) , L ¹ ( X * ) ) , | | · | | Y ) -compact.

Estimation of the Szlenk index of Banach spaces via Schreier spaces

Ryan Causey (2013)

Studia Mathematica

Similarity:

For each ordinal α < ω₁, we prove the existence of a Banach space with a basis and Szlenk index ω α + 1 which is universal for the class of separable Banach spaces with Szlenk index not exceeding ω α . Our proof involves developing a characterization of which Banach spaces embed into spaces with an FDD with upper Schreier space estimates.

Geometry of Banach spaces and biorthogonal systems

S. Dilworth, Maria Girardi, W. Johnson (2000)

Studia Mathematica

Similarity:

A separable Banach space X contains 1 isomorphically if and only if X has a bounded fundamental total w c 0 * -stable biorthogonal system. The dual of a separable Banach space X fails the Schur property if and only if X has a bounded fundamental total w c 0 * -biorthogonal system.

Remarks and examples concerning distance ellipsoids

Dirk Praetorius (2002)

Colloquium Mathematicae

Similarity:

We provide for every 2 ≤ k ≤ n an n-dimensional Banach space E with a unique distance ellipsoid such that there are precisely k linearly independent contact points between and B E . The corresponding result holds for spaces with non-unique distance ellipsoids as well. We construct n-dimensional Banach spaces E such that one distance ellipsoid has precisely k linearly independent contact points and all other distance ellipsoids have less than k-1 such points.