Displaying similar documents to “On minimal ideals in the ring of real-valued continuous functions on a frame”

The clean elements of the ring ( L )

Ali Akbar Estaji, Maryam Taha (2024)

Czechoslovak Mathematical Journal

Similarity:

We characterize clean elements of ( L ) and show that α ( L ) is clean if and only if there exists a clopen sublocale U in L such that 𝔠 L ( coz ( α - 1 ) ) U 𝔬 L ( coz ( α ) ) . Also, we prove that ( L ) is clean if and only if ( L ) has a clean prime ideal. Then, according to the results about ( L ) , we immediately get results about 𝒞 c ( L ) .

Augmentation quotients for Burnside rings of generalized dihedral groups

Shan Chang (2016)

Czechoslovak Mathematical Journal

Similarity:

Let H be a finite abelian group of odd order, 𝒟 be its generalized dihedral group, i.e., the semidirect product of C 2 acting on H by inverting elements, where C 2 is the cyclic group of order two. Let Ω ( 𝒟 ) be the Burnside ring of 𝒟 , Δ ( 𝒟 ) be the augmentation ideal of Ω ( 𝒟 ) . Denote by Δ n ( 𝒟 ) and Q n ( 𝒟 ) the n th power of Δ ( 𝒟 ) and the n th consecutive quotient group Δ n ( 𝒟 ) / Δ n + 1 ( 𝒟 ) , respectively. This paper provides an explicit -basis for Δ n ( 𝒟 ) and determines the isomorphism class of Q n ( 𝒟 ) for each positive integer n .

(Generalized) filter properties of the amalgamated algebra

Yusof Azimi (2022)

Archivum Mathematicum

Similarity:

Let R and S be commutative rings with unity, f : R S a ring homomorphism and J an ideal of S . Then the subring R f J : = { ( a , f ( a ) + j ) a R and j J } of R × S is called the amalgamation of R with S along J with respect to f . In this paper, we determine when R f J is a (generalized) filter ring.

Generalization of the S -Noetherian concept

Abdelamir Dabbabi, Ali Benhissi (2023)

Archivum Mathematicum

Similarity:

Let A be a commutative ring and 𝒮 a multiplicative system of ideals. We say that A is 𝒮 -Noetherian, if for each ideal Q of A , there exist I 𝒮 and a finitely generated ideal F Q such that I Q F . In this paper, we study the transfer of this property to the polynomial ring and Nagata’s idealization.

On atomic ideals in some factor rings of C ( X , )

Alireza Olfati (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A nonzero R -module M is atomic if for each two nonzero elements a , b in M , both cyclic submodules R a and R b have nonzero isomorphic submodules. In this article it is shown that for an infinite P -space X , the factor rings C ( X , ) / C F ( X , ) and C c ( X ) / C F ( X ) have no atomic ideals. This fact generalizes a result published in paper by A. Mozaffarikhah, E. Momtahan, A. R. Olfati and S. Safaeeyan (2020), which says that for an infinite set X , the factor ring X / ( X ) has no atomic ideal. Another result is that for each infinite...

Strongly 2-nil-clean rings with involutions

Huanyin Chen, Marjan Sheibani Abdolyousefi (2019)

Czechoslovak Mathematical Journal

Similarity:

A * -ring R is strongly 2-nil- * -clean if every element in R is the sum of two projections and a nilpotent that commute. Fundamental properties of such * -rings are obtained. We prove that a * -ring R is strongly 2-nil- * -clean if and only if for all a R , a 2 R is strongly nil- * -clean, if and only if for any a R there exists a * -tripotent e R such that a - e R is nilpotent and e a = a e , if and only if R is a strongly * -clean SN ring, if and only if R is abelian, J ( R ) is nil and R / J ( R ) is * -tripotent. Furthermore, we explore...

Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings

Vincenzo de Filippis (2016)

Czechoslovak Mathematical Journal

Similarity:

Let R be a prime ring of characteristic different from 2 and 3, Q r its right Martindale quotient ring, C its extended centroid, L a non-central Lie ideal of R and n 1 a fixed positive integer. Let α be an automorphism of the ring R . An additive map D : R R is called an α -derivation (or a skew derivation) on R if D ( x y ) = D ( x ) y + α ( x ) D ( y ) for all x , y R . An additive mapping F : R R is called a generalized α -derivation (or a generalized skew derivation) on R if there exists a skew derivation D on R such that F ( x y ) = F ( x ) y + α ( x ) D ( y ) for all x , y R . We prove...

On extending C k functions from an open set to with applications

Walter D. Burgess, Robert M. Raphael (2023)

Czechoslovak Mathematical Journal

Similarity:

For k { } and U open in , let C k ( U ) be the ring of real valued functions on U with the first k derivatives continuous. It is shown that for f C k ( U ) there is g C ( ) with U coz g and h C k ( ) with f g | U = h | U . The function f and its k derivatives are not assumed to be bounded on U . The function g is constructed using splines based on the Mollifier function. Some consequences about the ring C k ( ) are deduced from this, in particular that Q cl ( C k ( ) ) = Q ( C k ( ) ) .

Some properties of algebras of real-valued measurable functions

Ali Akbar Estaji, Ahmad Mahmoudi Darghadam (2023)

Archivum Mathematicum

Similarity:

Let M ( X , 𝒜 ) ( M * ( X , 𝒜 ) ) be the f -ring of all (bounded) real-measurable functions on a T -measurable space ( X , 𝒜 ) , let M K ( X , 𝒜 ) be the family of all f M ( X , 𝒜 ) such that coz ( f ) is compact, and let M ( X , 𝒜 ) be all f M ( X , 𝒜 ) that { x X : | f ( x ) | 1 n } is compact for any n . We introduce realcompact subrings of M ( X , 𝒜 ) , we show that M * ( X , 𝒜 ) is a realcompact subring of M ( X , 𝒜 ) , and also M ( X , 𝒜 ) is a realcompact if and only if ( X , 𝒜 ) is a compact measurable space. For every nonzero real Riesz map ϕ : M ( X , 𝒜 ) , we prove that there is an element x 0 X such that ϕ ( f ) = f ( x 0 ) for every f M ( X , 𝒜 ) if ( X , 𝒜 ) is a compact measurable space....