Displaying similar documents to “On the golden number and Fibonacci type sequences”

An exponential Diophantine equation related to the sum of powers of two consecutive k-generalized Fibonacci numbers

Carlos Alexis Gómez Ruiz, Florian Luca (2014)

Colloquium Mathematicae

Similarity:

A generalization of the well-known Fibonacci sequence F n 0 given by F₀ = 0, F₁ = 1 and F n + 2 = F n + 1 + F for all n ≥ 0 is the k-generalized Fibonacci sequence F ( k ) n - ( k - 2 ) whose first k terms are 0,..., 0, 1 and each term afterwards is the sum of the preceding k terms. For the Fibonacci sequence the formula F ² + F ² n + 1 ² = F 2 n + 1 holds for all n ≥ 0. In this paper, we show that there is no integer x ≥ 2 such that the sum of the xth powers of two consecutive k-generalized Fibonacci numbers is again a k-generalized Fibonacci number. This...

Some identities involving differences of products of generalized Fibonacci numbers

Curtis Cooper (2015)

Colloquium Mathematicae

Similarity:

Melham discovered the Fibonacci identity F n + 1 F n + 2 F n + 6 - F ³ n + 3 = ( - 1 ) F . He then considered the generalized sequence Wₙ where W₀ = a, W₁ = b, and W = p W n - 1 + q W n - 2 and a, b, p and q are integers and q ≠ 0. Letting e = pab - qa² - b², he proved the following identity: W n + 1 W n + 2 W n + 6 - W ³ n + 3 = e q n + 1 ( p ³ W n + 2 - q ² W n + 1 ) . There are similar differences of products of Fibonacci numbers, like this one discovered by Fairgrieve and Gould: F F n + 4 F n + 5 - F ³ n + 3 = ( - 1 ) n + 1 F n + 6 . We prove similar identities. For example, a generalization of Fairgrieve and Gould’s identity is W W n + 4 W n + 5 - W ³ n + 3 = e q ( p ³ W n + 4 - q W n + 5 ) .

On the intersection of two distinct k -generalized Fibonacci sequences

Diego Marques (2012)

Mathematica Bohemica

Similarity:

Let k 2 and define F ( k ) : = ( F n ( k ) ) n 0 , the k -generalized Fibonacci sequence whose terms satisfy the recurrence relation F n ( k ) = F n - 1 ( k ) + F n - 2 ( k ) + + F n - k ( k ) , with initial conditions 0 , 0 , , 0 , 1 ( k terms) and such that the first nonzero term is F 1 ( k ) = 1 . The sequences F : = F ( 2 ) and T : = F ( 3 ) are the known Fibonacci and Tribonacci sequences, respectively. In 2005, Noe and Post made a conjecture related to the possible solutions of the Diophantine equation F n ( k ) = F m ( ) . In this note, we use transcendental tools to provide a general method for finding the intersections F ( k ) F ( m ) which gives...

On the Lucas sequence equations Vₙ = kVₘ and Uₙ = kUₘ

Refik Keskin, Zafer Şiar (2013)

Colloquium Mathematicae

Similarity:

Let P and Q be nonzero integers. The sequences of generalized Fibonacci and Lucas numbers are defined by U₀ = 0, U₁ = 1 and U n + 1 = P U - Q U n - 1 for n ≥ 1, and V₀ = 2, V₁ = P and V n + 1 = P V - Q V n - 1 for n ≥ 1, respectively. In this paper, we assume that P ≥ 1, Q is odd, (P,Q) = 1, Vₘ ≠ 1, and V r 1 . We show that there is no integer x such that V = V r V x ² when m ≥ 1 and r is an even integer. Also we completely solve the equation V = V V r x ² for m ≥ 1 and r ≥ 1 when Q ≡ 7 (mod 8) and x is an even integer. Then we show that when P ≡ 3 (mod 4) and...

On the structure of sequences with forbidden zero-sum subsequences

W. D. Gao, R. Thangadurai (2003)

Colloquium Mathematicae

Similarity:

We study the structure of longest sequences in d which have no zero-sum subsequence of length n (or less). We prove, among other results, that for n = 2 a and d arbitrary, or n = 3 a and d = 3, every sequence of c(n,d)(n-1) elements in d which has no zero-sum subsequence of length n consists of c(n,d) distinct elements each appearing n-1 times, where c ( 2 a , d ) = 2 d and c ( 3 a , 3 ) = 9 .

Towards Bauer's theorem for linear recurrence sequences

Mariusz Skałba (2003)

Colloquium Mathematicae

Similarity:

Consider a recurrence sequence ( x k ) k of integers satisfying x k + n = a n - 1 x k + n - 1 + . . . + a x k + 1 + a x k , where a , a , . . . , a n - 1 are fixed and a₀ ∈ -1,1. Assume that x k > 0 for all sufficiently large k. If there exists k₀∈ ℤ such that x k < 0 then for each negative integer -D there exist infinitely many rational primes q such that q | x k for some k ∈ ℕ and (-D/q) = -1.

Explicit algebraic dependence formulae for infinite products related with Fibonacci and Lucas numbers

Hajime Kaneko, Takeshi Kurosawa, Yohei Tachiya, Taka-aki Tanaka (2015)

Acta Arithmetica

Similarity:

Let d ≥ 2 be an integer. In 2010, the second, third, and fourth authors gave necessary and sufficient conditions for the infinite products k = 1 U d k - a i ( 1 + ( a i ) / ( U d k ) ) (i=1,...,m) or k = 1 V d k - a i ( 1 + ( a i ) ( V d k ) (i=1,...,m) to be algebraically dependent, where a i are non-zero integers and U n and V n are generalized Fibonacci numbers and Lucas numbers, respectively. The purpose of this paper is to relax the condition on the non-zero integers a 1 , . . . , a m to non-zero real algebraic numbers, which gives new cases where the infinite products above are algebraically...

On the least common multiple of Lucas subsequences

Shigeki Akiyama, Florian Luca (2013)

Acta Arithmetica

Similarity:

We compare the growth of the least common multiple of the numbers u a 1 , . . . , u a n and | u a 1 u a n | , where ( u n ) n 0 is a Lucas sequence and ( a n ) n 0 is some sequence of positive integers.

Primefree shifted Lucas sequences

Lenny Jones (2015)

Acta Arithmetica

Similarity:

We say a sequence = ( s ) n 0 is primefree if |sₙ| is not prime for all n ≥ 0, and to rule out trivial situations, we require that no single prime divides all terms of . In this article, we focus on the particular Lucas sequences of the first kind, a = ( u ) n 0 , defined by u₀ = 0, u₁ = 1, and uₙ = aun-1 + un-2 for n≥2, where a is a fixed integer. More precisely, we show that for any integer a, there exist infinitely many integers k such that both of the shifted sequences a ± k are simultaneously primefree. This...

Cobham's theorem for substitutions

Fabien Durand (2011)

Journal of the European Mathematical Society

Similarity:

The seminal theorem of Cobham has given rise during the last 40 years to a lot of work about non-standard numeration systems and has been extended to many contexts. In this paper, as a result of fifteen years of improvements, we obtain a complete and general version for the so-called substitutive sequences. Let α and β be two multiplicatively independent Perron numbers. Then a sequence x A , where A is a finite alphabet, is both α -substitutive and β -substitutive if and only if x is ultimately...

On the spacing between terms of generalized Fibonacci sequences

Diego Marques (2014)

Colloquium Mathematicae

Similarity:

For k ≥ 2, the k-generalized Fibonacci sequence ( F ( k ) ) is defined to have the initial k terms 0,0,...,0,1 and be such that each term afterwards is the sum of the k preceding terms. We will prove that the number of solutions of the Diophantine equation F ( k ) - F ( ) = c > 0 (under some weak assumptions) is bounded by an effectively computable constant depending only on c.

Diophantine approximations with Fibonacci numbers

Victoria Zhuravleva (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let F n be the n -th Fibonacci number. Put ϕ = 1 + 5 2 . We prove that the following inequalities hold for any real α : 1) inf n | | F n α | | ϕ - 1 ϕ + 2 , 2) lim inf n | | F n α | | 1 5 , 3) lim inf n | | ϕ n α | | 1 5 . These results are the best possible.

The number of solutions to the generalized Pillai equation ± r a x ± s b y = c .

Reese Scott, Robert Styer (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We consider N , the number of solutions ( x , y , u , v ) to the equation ( - 1 ) u r a x + ( - 1 ) v s b y = c in nonnegative integers x , y and integers u , v { 0 , 1 } , for given integers a &gt; 1 , b &gt; 1 , c &gt; 0 , r &gt; 0 and s &gt; 0 . When gcd ( r a , s b ) = 1 , we show that N 3 except for a finite number of cases all of which satisfy max ( a , b , r , s , x , y ) &lt; 2 · 10 15 for each solution; when gcd ( a , b ) &gt; 1 , we show that N 3 except for three infinite families of exceptional cases. We find several different ways to generate an infinite number of cases giving N = 3 solutions.