Displaying similar documents to “An investigation on the n -fold IVRL-filters in triangle algebras”

Relative co-annihilators in lattice equality algebras

Sogol Niazian, Mona Aaly Kologani, Rajab Ali Borzooei (2024)

Mathematica Bohemica

Similarity:

We introduce the notion of relative co-annihilator in lattice equality algebras and investigate some important properties of it. Then, we obtain some interesting relations among -irreducible filters, positive implicative filters, prime filters and relative co-annihilators. Given a lattice equality algebra 𝔼 and 𝔽 a filter of 𝔼 , we define the set of all 𝔽 -involutive filters of 𝔼 and show that by defining some operations on it, it makes a BL-algebra.

G -supplemented property in the lattices

Shahabaddin Ebrahimi Atani (2022)

Mathematica Bohemica

Similarity:

Let L be a lattice with the greatest element 1 . Following the concept of generalized small subfilter, we define g -supplemented filters and investigate the basic properties and possible structures of these filters.

A representation theorem for tense n × m -valued Łukasiewicz-Moisil algebras

Aldo Victorio Figallo, Gustavo Pelaitay (2015)

Mathematica Bohemica

Similarity:

In 2000, Figallo and Sanza introduced n × m -valued Łukasiewicz-Moisil algebras which are both particular cases of matrix Łukasiewicz algebras and a generalization of n -valued Łukasiewicz-Moisil algebras. Here we initiate an investigation into the class n × m of tense n × m -valued Łukasiewicz-Moisil algebras (or tense LM n × m -algebras), namely n × m -valued Łukasiewicz-Moisil algebras endowed with two unary operations called tense operators. These algebras constitute a generalization of tense...

Transfer of derived equivalences from subalgebras to endomorphism algebras II

Shengyong Pan, Jiahui Yu (2024)

Czechoslovak Mathematical Journal

Similarity:

We investigate derived equivalences between subalgebras of some Φ -Auslander-Yoneda algebras from a class of n -angles in weakly n -angulated categories. The derived equivalences are obtained by transferring subalgebras induced by n -angles to endomorphism algebras induced by approximation sequences. Then we extend our constructions in T. Brüstle, S. Y. Pan (2016) to n -angle cases. Finally, we give an explicit example to illustrate our result.

Singularity categories of skewed-gentle algebras

Xinhong Chen, Ming Lu (2015)

Colloquium Mathematicae

Similarity:

Let K be an algebraically closed field. Let (Q,Sp,I) be a skewed-gentle triple, and let ( Q s g , I s g ) and ( Q g , I g ) be the corresponding skewed-gentle pair and the associated gentle pair, respectively. We prove that the skewed-gentle algebra K Q s g / I s g is singularity equivalent to KQ/⟨I⟩. Moreover, we use (Q,Sp,I) to describe the singularity category of K Q g / I g . As a corollary, we find that g l d i m K Q s g / I s g < if and only if g l d i m K Q / I < if and only if g l d i m K Q g / I g < .

Matrix representation of finite effect algebras

Grzegorz Bińczak, Joanna Kaleta, Andrzej Zembrzuski (2023)

Kybernetika

Similarity:

In this paper we present representation of finite effect algebras by matrices. For each non-trivial finite effect algebra E we construct set of matrices M ( E ) in such a way that effect algebras E 1 and E 2 are isomorphic if and only if M ( E 1 ) = M ( E 2 ) . The paper also contains the full list of matrices representing all nontrivial finite effect algebras of cardinality at most 8 .

P λ -sets and skeletal mappings

Aleksander Błaszczyk, Anna Brzeska (2013)

Colloquium Mathematicae

Similarity:

We prove that if the topology on the set Seq of all finite sequences of natural numbers is determined by P λ -filters and λ ≤ , then Seq is a P λ -set in its Čech-Stone compactification. This improves some results of Simon and of Juhász and Szymański. As a corollary we obtain a generalization of a result of Burke concerning skeletal maps and we partially answer a question of his.

Trivialization of 𝒞 ( X ) -algebras with strongly self-absorbing fibres

Marius Dadarlat, Wilhelm Winter (2008)

Bulletin de la Société Mathématique de France

Similarity:

Suppose A is a separable unital 𝒞 ( X ) -algebra each fibre of which is isomorphic to the same strongly self-absorbing and K 1 -injective C * -algebra 𝒟 . We show that A and 𝒞 ( X ) 𝒟 are isomorphic as 𝒞 ( X ) -algebras provided the compact Hausdorff space X is finite-dimensional. This statement is known not to extend to the infinite-dimensional case.

A generalization of a formalized theory of fields of sets on non-classical logics

Helena Rasiowa

Similarity:

Contents Introduction.................................................................................................................................................. 3 § 1. System 𝒮 of a propositional calculus...................................................................... 4 § 2. System 𝒮 * ..................................................................................................................... 5 § 3. 𝒮 * -algebras.....................................................................................................................

The moduli space of commutative algebras of finite rank

Bjorn Poonen (2008)

Journal of the European Mathematical Society

Similarity:

The moduli space of rank- n commutative algebras equipped with an ordered basis is an affine scheme 𝔅 n of finite type over , with geometrically connected fibers. It is smooth if and only if n 3 . It is reducible if n 8 (and the converse holds, at least if we remove the fibers above 2 and 3 ). The relative dimension of 𝔅 n is 2 27 n 3 + O ( n 8 / 3 ) . The subscheme parameterizing étale algebras is isomorphic to GL n / S n , which is of dimension only n 2 . For n 8 , there exist algebras that are not limits of étale algebras. The dimension...

Congruences and homomorphisms on Ω -algebras

Elijah Eghosa Edeghagba, Branimir Šešelja, Andreja Tepavčević (2017)

Kybernetika

Similarity:

The topic of the paper are Ω -algebras, where Ω is a complete lattice. In this research we deal with congruences and homomorphisms. An Ω -algebra is a classical algebra which is not assumed to satisfy particular identities and it is equipped with an Ω -valued equality instead of the ordinary one. Identities are satisfied as lattice theoretic formulas. We introduce Ω -valued congruences, corresponding quotient Ω -algebras and Ω -homomorphisms and we investigate connections among these notions....