Displaying similar documents to “Fixed point approximation under Mann iteration beyond Ishikawa”

The new iteration methods for solving absolute value equations

Rashid Ali, Kejia Pan (2023)

Applications of Mathematics

Similarity:

Many problems in operations research, management science, and engineering fields lead to the solution of absolute value equations. In this study, we propose two new iteration methods for solving absolute value equations A x - | x | = b , where A n × n is an M -matrix or strictly diagonally dominant matrix, b n and x n is an unknown solution vector. Furthermore, we discuss the convergence of the proposed two methods under suitable assumptions. Numerical experiments are given to verify the feasibility, robustness...

Renormings of c 0 and the minimal displacement problem

Łukasz Piasecki (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The aim of this paper is to show that for every Banach space ( X , · ) containing asymptotically isometric copy of the space c 0 there is a bounded, closed and convex set C X with the Chebyshev radius r ( C ) = 1 such that for every k 1 there exists a k -contractive mapping T : C C with x - T x > 1 1 / k for any x C .

Generalized versions of Ilmanen lemma: Insertion of C 1 , ω or C loc 1 , ω functions

Václav Kryštof (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that for a normed linear space X , if f 1 : X is continuous and semiconvex with modulus ω , f 2 : X is continuous and semiconcave with modulus ω and f 1 f 2 , then there exists f C 1 , ω ( X ) such that f 1 f f 2 . Using this result we prove a generalization of Ilmanen lemma (which deals with the case ω ( t ) = t ) to the case of an arbitrary nontrivial modulus ω . This generalization (where a C l o c 1 , ω function is inserted) gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique in 2010.

Some theorems of Korovkin type

Tomoko Hachiro, Takateru Okayasu (2003)

Studia Mathematica

Similarity:

We take another approach to the well known theorem of Korovkin, in the following situation: X, Y are compact Hausdorff spaces, M is a unital subspace of the Banach space C(X) (respectively, C ( X ) ) of all complex-valued (resp., real-valued) continuous functions on X, S ⊂ M a complex (resp., real) function space on X, ϕₙ a sequence of unital linear contractions from M into C(Y) (resp., C ( Y ) ), and ϕ a linear isometry from M into C(Y) (resp., C ( Y ) ). We show, under the assumption that Π N Π T , where Π N is...

Weak convergence of mutually independent X B and X A under weak convergence of X X B - X A

W. Szczotka (2006)

Applicationes Mathematicae

Similarity:

For each n ≥ 1, let v n , k , k 1 and u n , k , k 1 be mutually independent sequences of nonnegative random variables and let each of them consist of mutually independent and identically distributed random variables with means v̅ₙ and u̅̅ₙ, respectively. Let X B ( t ) = ( 1 / c ) j = 1 [ n t ] ( v n , j - v ̅ ) , X A ( t ) = ( 1 / c ) j = 1 [ n t ] ( u n , j - u ̅ ̅ ) , t ≥ 0, and X = X B - X A . The main result gives conditions under which the weak convergence X X , where X is a Lévy process, implies X B X B and X A X A , where X B and X A are mutually independent Lévy processes and X = X B - X A .

On almost everywhere differentiability of the metric projection on closed sets in l p ( n ) , 2 < p <

Tord Sjödin (2018)

Czechoslovak Mathematical Journal

Similarity:

Let F be a closed subset of n and let P ( x ) denote the metric projection (closest point mapping) of x n onto F in l p -norm. A classical result of Asplund states that P is (Fréchet) differentiable almost everywhere (a.e.) in n in the Euclidean case p = 2 . We consider the case 2 < p < and prove that the i th component P i ( x ) of P ( x ) is differentiable a.e. if P i ( x ) x i and satisfies Hölder condition of order 1 / ( p - 1 ) if P i ( x ) = x i .

Equidistribution towards the Green current

Vincent Guedj (2003)

Bulletin de la Société Mathématique de France

Similarity:

Let f : k k be a dominating rational mapping of first algebraic degree λ 2 . If S is a positive closed current of bidegree ( 1 , 1 ) on k with zero Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks λ - n ( f n ) * S converge to the Green current T f . For some families of mappings, we get finer convergence results which allow us to characterize all f * -invariant currents.

C * -points vs P -points and P -points

Jorge Martinez, Warren Wm. McGovern (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In a Tychonoff space X , the point p X is called a C * -point if every real-valued continuous function on C { p } can be extended continuously to p . Every point in an extremally disconnected space is a C * -point. A classic example is the space 𝐖 * = ω 1 + 1 consisting of the countable ordinals together with ω 1 . The point ω 1 is known to be a C * -point as well as a P -point. We supply a characterization of C * -points in totally ordered spaces. The remainder of our time is aimed at studying when a point in a product space...

On a question of Schmidt and Summerer concerning 3 -systems

Johannes Schleischitz (2020)

Communications in Mathematics

Similarity:

Following a suggestion of W.M. Schmidt and L. Summerer, we construct a proper 3 -system ( P 1 , P 2 , P 3 ) with the property ϕ ¯ 3 = 1 . In fact, our method generalizes to provide n -systems with ϕ ¯ n = 1 , for arbitrary n 3 . We visualize our constructions with graphics. We further present explicit examples of numbers ξ 1 , ... , ξ n - 1 that induce the n -systems in question.

Selectors of discrete coarse spaces

Igor Protasov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a coarse space ( X , ) with the bornology of bounded subsets, we extend the coarse structure from X × X to the natural coarse structure on ( { } ) × ( { } ) and say that a macro-uniform mapping f : ( { } ) X (or f : [ X ] 2 X ) is a selector (or 2-selector) of ( X , ) if f ( A ) A for each A { } ( A [ X ] 2 , respectively). We prove that a discrete coarse space ( X , ) admits a selector if and only if ( X , ) admits a 2-selector if and only if there exists a linear order “ " on X such that the family of intervals { [ a , b ] : a , b X , a b } is a base for the bornology .

( 0 , 1 ) -matrices, discrepancy and preservers

LeRoy B. Beasley (2019)

Czechoslovak Mathematical Journal

Similarity:

Let m and n be positive integers, and let R = ( r 1 , ... , r m ) and S = ( s 1 , ... , s n ) be nonnegative integral vectors. Let A ( R , S ) be the set of all m × n ( 0 , 1 ) -matrices with row sum vector R and column vector S . Let R and S be nonincreasing, and let F ( R ) be the m × n ( 0 , 1 ) -matrix, where for each i , the i th row of F ( R , S ) consists of r i 1’s followed by ( n - r i ) 0’s. Let A A ( R , S ) . The discrepancy of A, disc ( A ) , is the number of positions in which F ( R ) has a 1 and A has a 0. In this paper we investigate linear operators mapping m × n matrices over...

Spectral condition, hitting times and Nash inequality

Eva Löcherbach, Oleg Loukianov, Dasha Loukianova (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Let X be a μ -symmetric Hunt process on a LCCB space 𝙴 . For an open set 𝙶 𝙴 , let τ 𝙶 be the exit time of X from 𝙶 and A 𝙶 be the generator of the process killed when it leaves 𝙶 . Let r : [ 0 , [ [ 0 , [ and R ( t ) = 0 t r ( s ) d s . We give necessary and sufficient conditions for 𝔼 μ R ( τ 𝙶 ) l t ; in terms of the behavior near the origin of the spectral measure of - A 𝙶 . When r ( t ) = t l , l 0 , by means of this condition we derive the Nash inequality for the killed process. In the diffusion case this permits to show that the existence of moments of order l + 1 for τ 𝙶 ...

Hukuhara's differentiable iteration semigroups of linear set-valued functions

Andrzej Smajdor (2004)

Annales Polonici Mathematici

Similarity:

Let K be a closed convex cone with nonempty interior in a real Banach space and let cc(K) denote the family of all nonempty convex compact subsets of K. A family F t : t 0 of continuous linear set-valued functions F t : K c c ( K ) is a differentiable iteration semigroup with F⁰(x) = x for x ∈ K if and only if the set-valued function Φ ( t , x ) = F t ( x ) is a solution of the problem D t Φ ( t , x ) = Φ ( t , G ( x ) ) : = Φ ( t , y ) : y G ( x ) , Φ(0,x) = x, for x ∈ K and t ≥ 0, where D t Φ ( t , x ) denotes the Hukuhara derivative of Φ(t,x) with respect to t and G ( x ) : = l i m s 0 + ( F s ( x ) - x ) / s for x ∈ K.

Three-space problems for the approximation property

A. Szankowski (2009)

Journal of the European Mathematical Society

Similarity:

It is shown that there is a subspace Z q of q for 1 < q < 2 which is isomorphic to q such that q / Z q does not have the approximation property. On the other hand, for 2 < p < there is a subspace Y p of p such that Y p does not have the approximation property (AP) but the quotient space p / Y p is isomorphic to p . The result is obtained by defining random “Enflo-Davie spaces” Y p which with full probability fail AP for all 2 < p and have AP for all 1 p 2 . For 1 < p 2 , Y p are isomorphic to p .