Displaying similar documents to “Acyclic 4-choosability of planar graphs without 4-cycles”

The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths

Halina Bielak, Kinga Dąbrowska (2015)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The Ramsey number R ( G , H ) for a pair of graphs G and H is defined as the smallest integer n such that, for any graph F on n vertices, either F contains G or F ¯ contains H as a subgraph, where F ¯ denotes the complement of F . We study Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths and determine these numbers for some cases. We extend many known results studied in [5, 14, 18, 19, 20]. In particular we count the numbers R ( K 1 + L n , P m ) and R ( K 1 + L n , C m ) for some integers m , n , where L n is...

Neighbor sum distinguishing list total coloring of IC-planar graphs without 5-cycles

Donghan Zhang (2022)

Czechoslovak Mathematical Journal

Similarity:

Let G = ( V ( G ) , E ( G ) ) be a simple graph and E G ( v ) denote the set of edges incident with a vertex v . A neighbor sum distinguishing (NSD) total coloring φ of G is a proper total coloring of G such that z E G ( u ) { u } φ ( z ) z E G ( v ) { v } φ ( z ) for each edge u v E ( G ) . Pilśniak and Woźniak asserted in 2015 that each graph with maximum degree Δ admits an NSD total ( Δ + 3 ) -coloring. We prove that the list version of this conjecture holds for any IC-planar graph with Δ 11 but without 5 -cycles by applying the Combinatorial Nullstellensatz.

Note on improper coloring of 1 -planar graphs

Yanan Chu, Lei Sun, Jun Yue (2019)

Czechoslovak Mathematical Journal

Similarity:

A graph G = ( V , E ) is called improperly ( d 1 , , d k ) -colorable if the vertex set V can be partitioned into subsets V 1 , , V k such that the graph G [ V i ] induced by the vertices of V i has maximum degree at most d i for all 1 i k . In this paper, we mainly study the improper coloring of 1 -planar graphs and show that 1 -planar graphs with girth at least 7 are ( 2 , 0 , 0 , 0 ) -colorable.

On g c -colorings of nearly bipartite graphs

Yuzhuo Zhang, Xia Zhang (2018)

Czechoslovak Mathematical Journal

Similarity:

Let G be a simple graph, let d ( v ) denote the degree of a vertex v and let g be a nonnegative integer function on V ( G ) with 0 g ( v ) d ( v ) for each vertex v V ( G ) . A g c -coloring of G is an edge coloring such that for each vertex v V ( G ) and each color c , there are at least g ( v ) edges colored c incident with v . The g c -chromatic index of G , denoted by χ g c ' ( G ) , is the maximum number of colors such that a g c -coloring of G exists. Any simple graph G has the g c -chromatic index equal to δ g ( G ) or δ g ( G ) - 1 , where δ g ( G ) = min v V ( G ) d ( v ) / g ( v ) . A graph G is nearly bipartite,...

A note on the size Ramsey numbers for matchings versus cycles

Edy Tri Baskoro, Tomáš Vetrík (2021)

Mathematica Bohemica

Similarity:

For graphs G , F 1 , F 2 , we write G ( F 1 , F 2 ) if for every red-blue colouring of the edge set of G we have a red copy of F 1 or a blue copy of F 2 in G . The size Ramsey number r ^ ( F 1 , F 2 ) is the minimum number of edges of a graph G such that G ( F 1 , F 2 ) . Erdős and Faudree proved that for the cycle C n of length n and for t 2 matchings t K 2 , the size Ramsey number r ^ ( t K 2 , C n ) < n + ( 4 t + 3 ) n . We improve their upper bound for t = 2 and t = 3 by showing that r ^ ( 2 K 2 , C n ) n + 2 3 n + 9 for n 12 and r ^ ( 3 K 2 , C n ) < n + 6 n + 9 for n 25 .

Saturation numbers for linear forests P 6 + t P 2

Jingru Yan (2023)

Czechoslovak Mathematical Journal

Similarity:

A graph G is H -saturated if it contains no H as a subgraph, but does contain H after the addition of any edge in the complement of G . The saturation number, sat ( n , H ) , is the minimum number of edges of a graph in the set of all H -saturated graphs of order n . We determine the saturation number sat ( n , P 6 + t P 2 ) for n 10 3 t + 10 and characterize the extremal graphs for n > 10 3 t + 20 .

Generalized 3-edge-connectivity of Cartesian product graphs

Yuefang Sun (2015)

Czechoslovak Mathematical Journal

Similarity:

The generalized k -connectivity κ k ( G ) of a graph G was introduced by Chartrand et al. in 1984. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized k -edge-connectivity which is defined as λ k ( G ) = min { λ ( S ) : S V ( G ) and | S | = k } , where λ ( S ) denotes the maximum number of pairwise edge-disjoint trees T 1 , T 2 , ... , T in G such that S V ( T i ) for 1 i . In this paper we prove that for any two connected graphs G and H we have λ 3 ( G H ) λ 3 ( G ) + λ 3 ( H ) , where G H is the Cartesian product of G and H . Moreover, the bound is sharp. We also...

Matchings in complete bipartite graphs and the r -Lah numbers

Gábor Nyul, Gabriella Rácz (2021)

Czechoslovak Mathematical Journal

Similarity:

We give a graph theoretic interpretation of r -Lah numbers, namely, we show that the r -Lah number n k r counting the number of r -partitions of an ( n + r ) -element set into k + r ordered blocks is just equal to the number of matchings consisting of n - k edges in the complete bipartite graph with partite sets of cardinality n and n + 2 r - 1 ( 0 k n , r 1 ). We present five independent proofs including a direct, bijective one. Finally, we close our work with a similar result for r -Stirling numbers of the second kind. ...

The potential-Ramsey number of K n and K t - k

Jin-Zhi Du, Jian Hua Yin (2022)

Czechoslovak Mathematical Journal

Similarity:

A nonincreasing sequence π = ( d 1 , ... , d n ) of nonnegative integers is a graphic sequence if it is realizable by a simple graph G on n vertices. In this case, G is referred to as a realization of π . Given two graphs G 1 and G 2 , A. Busch et al. (2014) introduced the potential-Ramsey number of G 1 and G 2 , denoted by r pot ( G 1 , G 2 ) , as the smallest nonnegative integer m such that for every m -term graphic sequence π , there is a realization G of π with G 1 G or with G 2 G ¯ , where G ¯ is the complement of G . For t 2 and 0 k t 2 , let K t - k be the graph...

Even factor of bridgeless graphs containing two specified edges

Nastaran Haghparast, Dariush Kiani (2018)

Czechoslovak Mathematical Journal

Similarity:

An even factor of a graph is a spanning subgraph in which each vertex has a positive even degree. Let G be a bridgeless simple graph with minimum degree at least 3 . Jackson and Yoshimoto (2007) showed that G has an even factor containing two arbitrary prescribed edges. They also proved that G has an even factor in which each component has order at least four. Moreover, Xiong, Lu and Han (2009) showed that for each pair of edges e 1 and e 2 of G , there is an even factor containing e 1 and e 2 ...

On γ-labelings of trees

Gary Chartrand, David Erwin, Donald W. VanderJagt, Ping Zhang (2005)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a graph of order n and size m. A γ-labeling of G is a one-to-one function f:V(G) → 0,1,2,...,m that induces a labeling f’: E(G) → 1,2,...,m of the edges of G defined by f’(e) = |f(u)-f(v)| for each edge e = uv of G. The value of a γ-labeling f is v a l ( f ) = Σ e E ( G ) f ' K ( e ) . The maximum value of a γ-labeling of G is defined as v a l m a x ( G ) = m a x v a l ( f ) : f i s a γ - l a b e l i n g o f G ; while the minimum value of a γ-labeling of G is v a l m i n ( G ) = m i n v a l ( f ) : f i s a γ - l a b e l i n g o f G ; The values v a l m a x ( S p , q ) and v a l m i n ( S p , q ) are determined for double stars S p , q . We present characterizations of connected graphs G of order n for which...

On path-quasar Ramsey numbers

Binlong Li, Bo Ning (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let G 1 and G 2 be two given graphs. The Ramsey number R ( G 1 , G 2 ) is the least integer r such that for every graph G on r vertices, either G contains a G 1 or G ¯ contains a G 2 . Parsons gave a recursive formula to determine the values of R ( P n , K 1 , m ) , where P n is a path on n vertices and K 1 , m is a star on m + 1 vertices. In this note, we study the Ramsey numbers R ( P n , K 1 F m ) , where F m is a linear forest on m vertices. We determine the exact values of R ( P n , K 1 F m ) for the cases m n and m 2 n , and for the case that F m has no odd component. Moreover, we...

The Turán number of the graph 3 P 4

Halina Bielak, Sebastian Kieliszek (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let e x ( n , G ) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let P i denote a path consisting of i vertices and let m P i denote m disjoint copies of P i . In this paper we count e x ( n , 3 P 4 ) .

On graceful colorings of trees

Sean English, Ping Zhang (2017)

Mathematica Bohemica

Similarity:

A proper coloring c : V ( G ) { 1 , 2 , ... , k } , k 2 of a graph G is called a graceful k -coloring if the induced edge coloring c ' : E ( G ) { 1 , 2 , ... , k - 1 } defined by c ' ( u v ) = | c ( u ) - c ( v ) | for each edge u v of G is also proper. The minimum integer k for which G has a graceful k -coloring is the graceful chromatic number χ g ( G ) . It is known that if T is a tree with maximum degree Δ , then χ g ( T ) 5 3 Δ and this bound is best possible. It is shown for each integer Δ 2 that there is an infinite class of trees T with maximum degree Δ such that χ g ( T ) = 5 3 Δ . In particular, we investigate for each...